めもめも

このブログに記載の内容は個人の見解であり、必ずしも所属組織の立場、戦略、意見を代表するものではありません。

Quantum Information and Quantum Optics with Superconducting Circuits - Exercise Solutions (Chapter 9)

9.1

(1) \displaystyle U = e^{-i\frac{\theta(\epsilon)}{2}\sigma^y} = \cos\frac{\theta}{2}\,\mathbb 1 - i\sin\frac{\theta}{2}\,\sigma^y

 \displaystyle U\sigma_zU^\dagger = \left(\cos\frac{\theta}{2}\,\mathbb 1 - i\sin\frac{\theta}{2}\,\sigma^y\right)\sigma_z\left(\cos\frac{\theta}{2}\,\mathbb 1 + i\sin\frac{\theta}{2}\,\sigma^y\right)

  \displaystyle = \cos\theta\,\sigma_z + \sin\theta\,\sigma_x

So, by setting \displaystyle \tan\theta = \frac{\Delta_{\rm min}}{\epsilon}, we have:

 \displaystyle H = \frac{\epsilon}{2}\sigma^z + \frac{\Delta_{\rm min}}{2}\sigma^x = \frac{1}{2}\sqrt{\epsilon^2+\Delta_{\rm min}^2}(\cos\theta\,\sigma_z + \sin\theta\,\sigma_x) = \frac{1}{2}\Delta(\epsilon)U\sigma^zU^\dagger

where \displaystyle \Delta(\epsilon) := \sqrt{\epsilon^2+\Delta_{\rm min}^2}


(2) We apply an adiabatic change to \epsilon(t).

 \displaystyle \mid\Psi(t)\rangle = U(t)\mid\xi(t)\rangle

 \displaystyle H\mid\Psi(t)\rangle = \frac{1}{2}\Delta(\epsilon)U(t)\sigma^zU(t)^\dagger U(t)\mid\xi(t)\rangle = \frac{1}{2}\Delta(\epsilon)U(t)\sigma^z\mid\xi(t)\rangle

On the other hand,

 \displaystyle i\frac{d}{dt}\mid\Psi(t)\rangle =  i\frac{d}{dt}\left\{U(t)\mid\xi(t)\rangle\right\} = i\dot U(t)\mid\xi(t)\rangle + iU(t)\frac{d}{dt}\mid\xi(t)\rangle

Hence, from the Schroedinger equation \displaystyle H\mid\Psi(t)\rangle = i\frac{d}{dt}\mid\Psi(t)\rangle, we have:

 \displaystyle i\frac{d}{dt}\mid\xi(t)\rangle = -iU^\dagger(t)\dot U(t)\mid\xi(t)\rangle + \frac{1}{2}\Delta(\epsilon)\sigma^z\mid\xi(t)\rangle

From the definition of U, we have:

 \displaystyle\dot U(t) = -i\frac{\dot\theta(t)}{2}\sigma^y U(t)

So, \displaystyle -iU^\dagger(t)\dot U(t) = -\frac{\dot\theta(t)}{2}\sigma^y

 \displaystyle\therefore\, i\frac{d}{dt}\mid\xi(t)\rangle = -\frac{\dot\theta(t)}{2}\sigma^y\mid\xi(t)\rangle + \frac{1}{2}\Delta(\epsilon)\sigma^z\mid\xi(t)\rangle --- (2-1)

By differentiating the both sides of \displaystyle \epsilon(t)\tan\theta(t) = \Delta_{\rm min},

 \displaystyle \dot\epsilon(t)\tan\theta(t) + \epsilon(t)\frac{\dot\theta(t)}{\cos^2\theta(t)} = 0

 \displaystyle\therefore\, \dot\theta(t) = -\frac{\dot\epsilon(t)}{\epsilon(t)}\sin\theta\cos\theta = -\frac{\Delta_{\rm min}}{\Delta^2(\epsilon)}\dot\epsilon(t)

So, from (2-1), we have:

 \displaystyle\therefore\, i\frac{d}{dt}\mid\xi(t)\rangle = \left\{\frac{1}{2}\Delta(\epsilon)\sigma^z+\frac{\Delta_{\rm min}\dot\epsilon(t)}{\Delta^2(\epsilon)}\sigma^y\right\}\mid\xi(t)\rangle


(3) Since \displaystyle \frac{d}{dt} = \dot\epsilon(t)\frac{d}{d\epsilon}, we have:

 \displaystyle\therefore\, i\frac{d}{d\epsilon}\mid\xi(\epsilon)\rangle = \left\{\frac{1}{2\dot\epsilon}\Delta(\epsilon)\sigma^z+\frac{\Delta_{\rm min}}{\Delta^2(\epsilon)}\sigma^y\right\}\mid\xi(\epsilon)\rangle


(4) \displaystyle H_{\rm eff} = \frac{1}{\Delta}\sigma^z + \frac{\Delta_{\min}\dot\epsilon}{2\Delta^2}\sigma^y
=\frac{\Delta}{2}\begin{pmatrix}1 & -ig \\ ig & -1\end{pmatrix}

where \displaystyle g = \frac{\Delta_{\min}\dot\epsilon}{\Delta^3}

The eigenvalues of H_{\rm eff} are \displaystyle E_{\pm} = \pm\frac{\Delta}{2}\sqrt{1+g^2}

The eigenvector with E_- is given by:

 \displaystyle \mid 0 \rangle \propto \begin{pmatrix}\frac{i}{g}\left(-1\sqrt{1+g^2}\right) \\ 1 \end{pmatrix} = \begin{pmatrix}i\frac{g}{2} \\ 1\end{pmatrix}

Hence, the correction is \displaystyle \frac{g}{2} = \frac{\Delta_{\rm min}\dot\epsilon}{2\Delta^3}

9.2

The change should be slower than the spontaneous photon emission time of the qubit.

9.3

 \displaystyle H=\frac{1}{2}\sum_{i=1}^{N-1}J_i\sigma_i^z\sigma_{i+1}^z

Fix the direction of the 1st spin as \mid\psi_1\rangle = \mid 0\rangle, and decide the remaining spins with the following induction:

 \displaystyle  \mid \psi_{i+1}\rangle = -{\rm sign}(J_i)\mid\psi_i\rangle\ (i=2, 3,\cdots)

9.4

(1) We usually choose H_0 as a non-interacting system such as \displaystyle H_0 = \sum_i\Delta_i\sigma_i^x in (9.18) or (9.12). So the time evolution under H_0 is local.

(2) We need at least one gate for one interaction. So the number of gates is \sim dN^d\ (d=1,2,3).

9.5

The variance of sample average \overline x scales as \displaystyle \frac{1}{M}.

 \displaystyle V(\overline x) = V\left(\sum_{i=1}^M\frac{x_i}{M}\right) = \frac{1}{M^2}\sum_{i=1}^MV(x_i) = \frac{V(x)}{M}

So, the deviation scales as \displaystyle \sqrt{V(\overline x)} \sim \frac{1}{\sqrt{M}}

Since the Hamiltonian has N^2 terms, the total variance of the estimated Energy (as a sample average) scales as \displaystyle \frac{N^4}{M}. So, to keep the total variance below \epsilon, we have:

 \displaystyle \frac{N^4}{M} < \epsilon

 \displaystyle \therefore M > \frac{N^4}{\epsilon}

9.6

In the limit of \displaystyle |J_{\rm f}| \gg 1, we ignore other terms. Then the ground state is apparently the one where all spins have the same direction. Flipping one spin, we have the minimum gap \Delta_{\rm min} = 2|J_{\rm f}|.

As the initial state (the ground state of H_0 is a superposition of all states, it has an overlap with the ground state of \displaystyle |J_{\rm f}| \gg 1. So, with the adiabatic process (in the limit of \dot\epsilon\sim 0), it achieves the state where all spins have the same direction, that is, the state of qubit 1 is copied to the N intermediate qubits.

9.7

In this case, "Success in M experiments" means "Success at least one of M experiments". So the success probability is calculated as "1 - probability of fails in all M experiments." Hence, the success probability is:

  p = 1 - (1-p_{\rm ramp})^M

If p_{\rm ramp} = 0.99, we need M \ge 2 to achieve p=0.9999.

Practically, t_{\rm TTS} is defined as M t_{\rm ramp} where M is the number of experiments to achieve the required success probability.