めもめも

このブログに記載の内容は個人の見解であり、必ずしも所属組織の立場、戦略、意見を代表するものではありません。

Detailed derivation of the Input-Output theory

Basic definitions

Think of a system consisted of:

  • A long waveguide with length d accommodating a photon field \hat b_k.
  • A small resonator at x=0 accommodating an electric oscillation \hat a.

that has the RWA Hamiltonian (5.60):

 \displaystyle H_{\rm RWA} = \omega\hat a^\dagger\hat a + \sum_k\left(g_k\hat a\hat b_k^\dagger + g_k^*\hat a^\dagger\hat b_k\right) + \sum_k\omega_k\hat b_k^\dagger\hat b_k --- (5.60)

where we use the unit system with \hbar = 1. So, the momentum p and the wavenumber k are the same p=k. (In general p = \hbar k.)

The wavelength of the photon field is numbered as \displaystyle \lambda_n \sim \frac{d}{n}. So, the wavenumber is counted as:

 \displaystyle k = p = \frac{2\pi}{\lambda_n} = \frac{2\pi}{d}n

Hence, assuming that d \gg 1, we can replace \displaystyle \frac{2\pi}{d}\sum_k \sim \int_{-\infty}^\infty dk = 2\int_0^\infty \left|\frac{dk}{d\omega}\right|d\omega.

Applying it to the last term of H_{\rm RWA}, we have:

 \displaystyle \sum_k\omega_k\hat b_k^\dagger\hat b_k \sim  \frac{d}{\pi}\int_0^\infty \omega\hat b(\omega)^\dagger\hat b(\omega)\left|\frac{dk}{d\omega}\right|\,d\omega

So the operator \hat b_k has a scale dependency as \displaystyle \hat b \sim \frac{1}{\sqrt{d}}. From the second term of H_{\rm RWA}, the coupling constant g_k has the same scale dependency \displaystyle g_k \sim \frac{1}{\sqrt{d}}

Now we define \displaystyle J^{\rm QO}(\omega) := 2d|g(\omega)|^2\left|\frac{dk}{d\omega}\right| as a scale independent spectral function. Then, we have the relationship (5.62):

 \displaystyle \frac{1}{2\pi}\int_0^{\infty} J^{\rm QO}(\omega)e^{-i\omega t}\,d\omega \sim \sum_k |g_k|^2e^{-i\omega_k t} =: K(t) --- (5.62)

Also, in the following discussion, we use the Fourier transformation of the Heaviside step function \Theta(t):

 \displaystyle \int_0^\infty e^{i\omega u}\,du = \int_{-\infty}^\infty\Theta(u)e^{i\omega u}\,du = \pi\delta(\omega) + i\,{\mathcal PV}\left(\frac{1}{\omega}\right) --- (0)

Note that (0) is a relationship as a hyperfunction. So it's valid only when they are combined with the operation \displaystyle \int_{-\infty}^\infty f(\omega)[*]\,d\omega.

Formal solution of the photon field \hat b_k(t)

From (5.60), we have the following Heisenberg equations (B.22):

 \displaystyle \frac{d}{dt}\hat a(t) = -i\omega\hat a(t) - i\sum_k g_k^*\hat b_k(t) --- (1)

 \displaystyle \frac{d}{dt}\hat b_k(t) = -i\omega_k\hat b_k(t) - ig_k\hat a(t) --- (2)

Define \hat f(t) as \displaystyle \hat b_k(t) = e^{-i\omega_k(t-t_0)}\left\{\hat b_k(t_0)+\hat f(t)\right\} with the initial condition \hat f(t_0)=0. Then, from (2), we have:

 \displaystyle e^{-i\omega_k(t-t_0)}\frac{d}{dt}\hat f(t) = -ig_k\hat a(t)

 \displaystyle\therefore\, \frac{d}{dt}\hat f(t) = -i e^{i\omega_k(t-t_0)}g_k\hat a(t)

 \displaystyle\therefore\, \hat f(t) = -ig_ke^{-i\omega_kt_0}\int_{t_0}^te^{i\omega_k \tau}\hat a(\tau)\,d\tau

 \displaystyle\therefore\, \hat b_k(t) = e^{-i\omega_k(t-t_0)}\hat b_k(t_0) -ig_k\int_{t_0}^t e^{-i\omega_k(t-\tau)}\hat a(\tau)\,d\tau --- (B.23)

A Langevin equation for the resonator

By substituting (B.23) into (1), we have:

 \displaystyle \frac{d}{dt}\hat a(t) = -i\omega\hat a(t) - i\sum_kg_k^*e^{-i\omega_k(t-t_0)}\hat b_k(t_0) - \int_{t_0}^t\sum_k |g_k|^2e^{-i\omega_k(t-\tau)}\hat a(\tau)\,d\tau

 \displaystyle \therefore\, \frac{d}{dt}\hat a(t) = -i\omega\hat a(t) - i \hat\xi(t) -\int_{t_0}^tK(t-\tau)\hat a(\tau)\,d\tau --- (5.61)

where \displaystyle \hat\xi(t) := \sum_kg_k^*e^{-i\omega_k(t-t_0)}\hat b_k(t_0).

Markovian approximation

We assume that the resonator resonates with the photon field with some frequency \omega' with a slow modulation \hat a_{\rm slow}(t).

 \hat a(t) = \hat a_{\rm slow}(t)e^{-i\omega' t}

and the contribution to the integration in (5.61) is dominated by the oscillation e^{-i\omega' t}. So,

 \displaystyle \int_{t_0}^tK(t-\tau)\hat a(\tau)\,d\tau \simeq \hat a_{\rm slow}(t)\int_{t_0}^tK(t-\tau)e^{-i\omega'\tau}\,d\tau

  \displaystyle=\hat a_{\rm slow}(t)e^{-i\omega't}\int_{0}^{t-t_0}K(u)e^{i\omega'u}\,du\ (u:=t-\tau)

  \displaystyle=\hat a(t)\int_{0}^{t-t_0}K(u)e^{i\omega'u}\,du

In the limit t_0 \to -\infty, we have:

 \displaystyle \int_{0}^{t-t_0}K(u)e^{i\omega'u}\,du = \frac{1}{2\pi}\int_0^\infty J^{\rm QO}(\omega)\left\{\int_0^{\infty}e^{i(\omega'-\omega)u}\,du\right\}d\omega

  \displaystyle = \frac{1}{2\pi}\int_0^\infty J^{\rm QO}(\omega)\left\{
\pi\delta(\omega'-\omega) + i\,{\mathcal PV}\left(\frac{1}{\omega'-\omega}\right)\right\}\,d\omega

  \displaystyle \simeq \frac{1}{2\pi}\int_{-\infty}^\infty J^{\rm QO}(\omega)\left\{
\pi\delta(\omega'-\omega) + i\,{\mathcal PV}\left(\frac{1}{\omega'-\omega}\right)\right\}\,d\omega

   (\because Contribution from around \omega\sim\omega' is dominant.)

  \displaystyle = \frac{1}{2}J^{\rm QO}(\omega') +i \frac{1}{2\pi}\lim_{\epsilon\to 0+}\int_{|\omega-\omega'|>\epsilon}\frac{J^{\rm QO}(\omega)}{\omega'-\omega}\,d\omega

  \displaystyle = \frac{\kappa}{2} + i\delta \omega --- (B.29)

where,

 \displaystyle\kappa := J^{\rm QO}(\omega')

 \displaystyle\delta\omega :=  \frac{1}{2\pi}\lim_{\epsilon\to 0+}\int_{|\omega-\omega'|>\epsilon}\frac{J^{\rm QO}(\omega)}{\omega'-\omega}\,d\omega --- (B.30)

By combining these results, we have:

 \displaystyle \int_{t_0}^tK(t-\tau)\hat a(\tau)\,d\tau \simeq \left(i\delta\omega + \frac{\kappa}{2}\right)\hat a(t) --- (B.26)

And from (5.61), we have:

 \displaystyle \frac{d}{dt}\hat a(t) = -\left\{i(\omega + \delta\omega)+\frac{\kappa}{2}\right\}\hat a(t)-i\hat\xi(t)

From this result, you can see that \hat a(t) oscillates as \displaystyle\hat a(t) \sim \hat a(0)e^{-\frac{\kappa}{2}t} e^{-i(\omega+\delta\omega)t}. So,

 \omega' = \omega + \delta\omega.

This means that \omega' is (implicitly) decided from the consistency condition with (B.30):

 \displaystyle\delta\omega = \omega' - \omega =  \frac{1}{2\pi}\lim_{\epsilon\to 0+}\int_{|\omega-\omega'|>\epsilon}\frac{J^{\rm QO}(\omega)}{\omega'-\omega}\,d\omega

Solution of the resonator \hat a(t)

Now we have the Langevin equation for the resonator:

 \displaystyle \frac{d}{dt}\hat a(t) = -\left(i\omega'+\frac{\kappa}{2}\right)\hat a(t)-i\hat\xi(t) --- (3)

  \displaystyle \hat\xi(t) := \sum_kg_k^*e^{-i\omega_k(t-t_0)}\hat b_k(t_0) --- (4)

Define \hat f(t) as \displaystyle \hat a(t) = e^{-i\left(\omega'+\frac{\kappa}{2}\right)(t-t_0)}\hat f(t). Then from (3), we have:

 \displaystyle e^{-i\left(\omega'+\frac{\kappa}{2}\right)(t-t_0)}\frac{d}{dt}\hat f(t) = -i\hat\xi(t)

 \displaystyle\therefore\,\frac{d}{dt}\hat f(t) = -i e^{i\left(\omega'+\frac{\kappa}{2}\right)(t-t_0)}\hat\xi(t)
=-i\sum_k g_k^* e^{i\left\{(\omega'-\omega_k)+\frac{\kappa}{2}\right\}(t-t_0)} \hat b_k(t_0)

 \displaystyle\therefore\,\hat f(t) = -i \sum_k g_k^* \frac{e^{i\left\{(\omega'-\omega_k)+\frac{\kappa}{2}\right\}(t-t_0)}}{i(\omega'-\omega_k)+\frac{\kappa}{2}} \hat b_k(t_0) +C

Hence, the solution \hat a(t) is:

 \displaystyle \hat a(t) = Ce^{-i\left(\omega'+\frac{\kappa}{2}\right)(t-t_0)} -i \sum_k g_k^* \frac{e^{i\omega_k(t-t_0)}}{i(\omega'-\omega_k)+\frac{\kappa}{2}} \hat b_k(t_0) --- (B.32)

The constant C is determined with the initial condition.

From this result, you can see that the contribution from coupling g_k is dominant around the resonant frequency \omega_k \sim \omega'. So changing the coupling strength g_k outside \omega_k \sim \omega' doesn't change the behavior of the system, and we can safely assume that g_k is almost constant. In terms of J^{\rm QO}(\omega), this means that J^{\rm QO}(\omega) \simeq J^{\rm QO}(\omega') = \kappa

Then, compared to the free plane wave solution \displaystyle \sum_k e^{-i\omega_k(t-t_0)}\hat b_k(t_0), \displaystyle \hat\xi(t) := \sum_kg_k^*e^{-i\omega_k(t-t_0)}\hat b_k(t_0) is rescaled with g_k \propto \sqrt{\kappa}.

So, we define \displaystyle\hat b^{\rm in}(t) := \frac{1}{\sqrt{\kappa}}\hat\xi(t) to have a renormalized operator, and (3) becomes:

 \displaystyle \frac{d}{dt}\hat a(t) = -\left(i\omega'+\frac{\kappa}{2}\right)\hat a(t) -i\sqrt{\kappa}\hat b^{\rm in}(t) --- (5.64)

Note that in the discussions above, we used the initial condition at t_0 \to -\infty. As a result, \displaystyle\hat\xi(t) corresponds to the input photon generated at t=t_0. So we named \hat b^{\rm in}(t) to indicate the input photon.

Input-Output relations

It's also possible to consider the boundary condition at t_0 \to \infty in the Markovian approximation. In this case, the calculation to get (B.29) becomes:

 \displaystyle \int_{0}^{t-t_0}K(u)e^{i\omega'u}\,du = \frac{1}{2\pi}\int_{0}^\infty J^{\rm QO}(\omega)\left\{\int_0^{-\infty}e^{i(\omega'-\omega)u}\,du\right\}d\omega

  \displaystyle = -\frac{1}{2\pi}\int_{0}^\infty J^{\rm QO}(\omega)\left\{\int_0^{\infty}e^{i(\omega-\omega')u}\,du\right\}d\omega

  \displaystyle \simeq - \frac{1}{2\pi}\int_{-\infty}^\infty J^{\rm QO}(\omega)\left\{
\pi\delta(\omega-\omega') + i\,{\mathcal PV}\left(\frac{1}{\omega-\omega'}\right)\right\}\,d\omega

  \displaystyle = -\frac{1}{2}J^{\rm QO}(\omega') +i \frac{1}{2\pi}\lim_{\epsilon\to 0+}\int_{|\omega-\omega'|>\epsilon}\frac{J^{\rm QO}(\omega)}{\omega'-\omega}\,d\omega

  \displaystyle = -\frac{\kappa}{2} + i\delta \omega --- (B.29)'

Note that we used the fact that \delta(x) is an even function and \displaystyle{\mathcal PV}\left(\frac{1}{x-x'}\right) is an odd function.

Compared to (B.29), (B.29)' has an opposite sign for \kappa, and (5.64) becomes:

 \displaystyle \frac{d}{dt}\hat a(t) = -\left(i\omega'-\frac{\kappa}{2}\right)\hat a(t) -i\sqrt{\kappa}\hat b^{\rm out}(t) --- (5.64)'

where \displaystyle\sqrt{\kappa}\hat b^{\rm out}(t) = \sum_kg_k^*e^{-i\omega_k(t-t_0)}\hat b_k(t_0) corresponds to the photon field pulling back to the current time t from the final status at t=t_0 \sim \infty.

By equating (5.64) and (5.64)', we have:

 \hat b^{\rm out}(t) = \hat b^{\rm in}(t) - i\sqrt{\kappa}\hat a(t) --- (B.38)