めもめも

このブログに記載の内容は個人の見解であり、必ずしも所属組織の立場、戦略、意見を代表するものではありません。

Gauge Invariance of superconducting circuits wavefunction model

Effective wavefunction describing the flow of superconducting elections (Cooper pairs):

  \displaystyle\psi(\mathbf x, t)\simeq \sqrt{n_s(\mathbf x,t)}e^{i\theta(\mathbf x,t)}

Schrödinger equation for \psi(\mathbf x, t):

  \displaystyle i\hbar\partial_t\psi(\mathbf x, t) = \left[\frac{1}{2m_s}\left\{-i\hbar\nabla-q_s\mathbf A(\mathbf x, t)\right\}^2 + q_sv(\mathbf x,t)\right]\psi(\mathbf x, t) --- (3.5)

I will show that this model is invariant under the gauge transformation:

   \displaystyle\psi(\mathbf x,t) \, \rightarrow\,  \displaystyle\psi'(\mathbf x,t) = e^{-i\frac{q_s}{\hbar}\chi(\mathbf x,t)}\psi(\mathbf x,t)

  \displaystyle \mathbf A(\mathbf x, t)\,\rightarrow\, \mathbf A'(\mathbf x, t) = \mathbf A(\mathbf x, t)-\nabla\chi(\mathbf x, t)

 \displaystyle v(\mathbf x,t)\, \rightarrow\, v'(\mathbf x, t) = v(\mathbf x,t)+\partial_t\chi(\mathbf x, t)

[Proof]

(3.5) is equivalent to

  \displaystyle \left[i\hbar\partial_t - q_sv(\mathbf x,t) - \frac{1}{2m_s}\left\{-i\hbar\nabla-q_s\mathbf A(\mathbf x,t)\right\}^2\right]
\psi(\mathbf x, t) = 0 --- (1)

A simple calculation shows the following commutation relations.

 \displaystyle \left[i\hbar\partial_t,\ e^{i\frac{q_s}{\hbar}\chi(\mathbf x,t)}\right] =-e^{i\frac{q_s}{\hbar}\chi(\mathbf x,t)}q_s\partial_t\chi(\mathbf x,t)

 \displaystyle \left[-i\hbar\nabla,\ e^{i\frac{q_s}{\hbar}\chi(\mathbf x,t)}\right] =e^{i\frac{q_s}{\hbar}\chi(\mathbf x,t)}q_s\nabla\chi(\mathbf x,t)

Hence we have:

 \displaystyle \left[i\hbar\partial_t-q_sv(\mathbf x,t),\ e^{i\frac{q_s}{\hbar}\chi(\mathbf x,t)}\right] =-e^{i\frac{q_s}{\hbar}\chi(\mathbf x,t)}q_s\partial_t\chi(\mathbf x,t) --- (2)

 \displaystyle \left[-i\hbar\nabla-q_s\mathbf A(\mathbf x, t),\ e^{i\frac{q_s}{\hbar}\chi(\mathbf x,t)}\right] =e^{i\frac{q_s}{\hbar}\chi(\mathbf x,t)}q_s\nabla\chi(\mathbf x,t) --- (3)

By using (2), we have:

  \displaystyle \left\{i\hbar\partial_t - q_sv(\mathbf x,t)\right\}\psi(\mathbf x,t)
= \left\{i\hbar\partial_t - q_sv(\mathbf x,t)\right\} e^{i\frac{q_s}{\hbar}\chi(\mathbf x,t)}\psi'(\mathbf x,t)

 \displaystyle = e^{i\frac{q_s}{\hbar}\chi(\mathbf x,t)} \left\{i\hbar\partial_t - q_sv(\mathbf x,t)\right\} \psi'(\mathbf x,t)-e^{i\frac{q_s}{\hbar}\chi(\mathbf x,t)}q_s(\partial_t\chi(\mathbf x,t)) \psi'(\mathbf x,t)

 \displaystyle = e^{i\frac{q_s}{\hbar}\chi(\mathbf x,t)} \left\{i\hbar\partial_t - q_sv'(\mathbf x,t)\right\} \psi'(\mathbf x,t) --- (4)

Similarly, by using (3), we have:

 \displaystyle \left\{-i\hbar\nabla-q_s\mathbf A(\mathbf x,t)\right\}\psi(\mathbf x, t) =  \left\{-i\hbar\nabla-q_s\mathbf A(\mathbf x,t)\right\}e^{i\frac{q_s}{\hbar}\chi(\mathbf x,t)}\psi'(\mathbf x,t)

 \displaystyle = e^{i\frac{q_s}{\hbar}\chi(\mathbf x,t)} \left\{-i\hbar\nabla-q_s\mathbf A(\mathbf x,t)\right\} \psi'(\mathbf x,t)+e^{i\frac{q_s}{\hbar}\chi(\mathbf x,t)}q_s(\nabla\chi(\mathbf x,t)) \psi'(\mathbf x,t)

 \displaystyle = e^{i\frac{q_s}{\hbar}\chi(\mathbf x,t)} \left\{-i\hbar\nabla-q_s\mathbf A'(\mathbf x,t)\right\} \psi'(\mathbf x,t)

Using (3) again:

 \displaystyle \left\{-i\hbar\nabla-q_s\mathbf A(\mathbf x,t)\right\}^2\psi(\mathbf x, t)

 \displaystyle=\left\{-i\hbar\nabla-q_s\mathbf A(\mathbf x,t)\right\}e^{i\frac{q_s}{\hbar}\chi(\mathbf x,t)}\left[
\left\{-i\hbar\nabla-q_s\mathbf A'(\mathbf x,t)\right\} \psi'(\mathbf x,t)
\right]

 \displaystyle=e^{i\frac{q_s}{\hbar}\chi(\mathbf x,t)}\left\{-i\hbar\nabla-q_s\mathbf A(\mathbf x,t)+q_s\nabla\chi(\mathbf x,t)\right\}\left[
\left\{-i\hbar\nabla-q_s\mathbf A'(\mathbf x,t)\right\} \psi'(\mathbf x,t)
\right]

 \displaystyle=e^{i\frac{q_s}{\hbar}\chi(\mathbf x,t)} \left\{-i\hbar\nabla-q_s\mathbf A'(\mathbf x,t)\right\}^2\psi'(\mathbf x, t) --- (5)

From (4) and (5), (1) is equivalent to:

  \displaystyle \left[i\hbar\partial_t - q_sv'(\mathbf x,t) - \frac{1}{2m_s}\left\{-i\hbar\nabla-q_s\mathbf A'(\mathbf x,t)\right\}^2\right]
\psi'(\mathbf x, t) = 0

Now we can show that the phase \varphi(\mathbf x,t) defined by the following equation is gauge-invariant:

 \displaystyle\theta(\mathbf x,t)-\theta(\mathbf x_0,t)=\varphi(\mathbf x,t)-\varphi(\mathbf x_0,t)+\frac{q_s}{\hbar}
\int_{\mathbf x_0}^{\mathbf x}\mathbf A(\mathbf r, t)\cdot d\mathbf l --- (3.16)

First, in terms of the phase \theta(\mathbf x, t), the gauge transformation of \psi(\mathbf x,t) can be written as:

 \displaystyle \theta(\mathbf x,t)\,\rightarrow\,\theta'(\mathbf x,t) = \theta(\mathbf x,t) - \frac{q_s}{\hbar}\chi(\mathbf x,t)

So, by combining with the gauge transformation of \mathbf A(\mathbf x,t), the combination \displaystyle \nabla \theta(\mathbf x,t)-\frac{q_s}{\hbar}\mathbf A(\mathbf x, t) becomes gauge-invariant. By integrating it through a path from \mathbf x_0 to \mathbf x, the following combination gives a gauge-invariant phase \varphi(\mathbf x,t) up to a constant C.

 \displaystyle \varphi(\mathbf x,t) := \theta(\mathbf x,t)-\theta(\mathbf x_0,t)-\frac{q_s}{\hbar}
\int_{\mathbf x_0}^{\mathbf x}\mathbf A(\mathbf r, t)\cdot d\mathbf l + C

By setting C=\varphi(\mathbf x_0,t), we get the expression (3.16)