めもめも

このブログに記載の内容は個人の見解であり、必ずしも所属組織の立場、戦略、意見を代表するものではありません。

(Informal) Errata of "A short introduction to the Lindblad Master Equation"

arxiv.org

p.8 Equation (24)

 \displaystyle\rho_E^{(1)}=\langle 0|_2\rho_E| 0\rangle _2 + \langle 1|_2\rho_E| 1\rangle _2
=\frac{1}{2}(|0\rangle\langle 0|_1+|1\rangle\langle 1|_2)

p.10 Equation (30)

 \displaystyle \rho_B = \pmatrix{
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 
}

p.11 Equation (31)

 \displaystyle (\mathbb{1}\otimes T_2)\rho_B = \frac{1}{2}\Bigg\{\pmatrix{1 & 0 \\ 0 & 0}\otimes\pmatrix{0 & 0 \\ 0 & 1} + \pmatrix{0 & 0 \\ 0 & 1}\otimes\pmatrix{1 & 0 \\ 0 & 0}

        \otimes\pmatrix{0 & 0 \\ 1 & 0}\otimes\pmatrix{0 & 0 \\ 1 & 0} + \pmatrix{0 & 1 \\ 0 & 0}\otimes\pmatrix{0 & 1 \\ 0 & 0}\Bigg\}

p.13 Derivation of (45) from (44)

First, in (44), we change the integral variable from s \rightarrow t-s (without any approximation) to get:

 \displaystyle \dot{\hat\rho}(t) = -\alpha^2\int_0^tds {\rm Tr}_E  \Big[ \hat H_I(t) ,\Big[ \hat H_I(t-s),\hat\rho (t)\otimes\hat\rho_E(0) \Big]\Big]

Then, we assume that the kernel in the integration is dominant where s \sim 0 (that is, \hat H_I(t-s) \sim \hat H_I(t)) and extend the upper limit of the integration to infinity. It results in (45).

p.19 Equation (81)

 \displaystyle\frac{d\rho}{dt}=\lim_{\Delta t\to 0}\frac{1}{\Delta t}(\mathcal V(\Delta t)\rho - \rho)
= \lim_{\Delta t\to 0}\frac{1}{\Delta t}\left(\sum_{i,j=1}^{d^2}c_{i,j}(\Delta t)F_i\rho F^\dagger_j-\rho\right)

   \displaystyle=\lim_{\Delta t\to 0}\frac{1}{\Delta t}\Bigg(\sum_{i,j=1}^{d^2-1}\cdots

p.20 Equation (88)

 \displaystyle \frac{d\rho}{dt}=\sum_{i,j}^{d^2-1}g_{i,j}F_i\rho F^\dagger_j + {G,\rho} - i[H,\rho]+\frac{g_{d^2,d^2}}{d}\rho

p.20 Equation (90)

 \displaystyle {\rm Tr}\left[\frac{d\rho}{dt}\right]={\rm Tr}\left[\sum_{i,j=1}^{d^2-1}g_{i,j}F^\dagger_jF_i\rho+2G_2\rho\right]=0