めもめも

このブログに記載の内容は個人の見解であり、必ずしも所属組織の立場、戦略、意見を代表するものではありません。

Calculations on Coherent States and Squeezed States (2)

Quantum Optics

Quantum Optics

This is intended to fill some gaps in calculation details in the book above.

2.6 Variance in the Electric Field

Hamiltonian  H = \hbar\omega\left(a^\dagger a+\frac{1}{2}\right)

Electric field operator  E =  i E_0 (ae^{i\mathbf k\cdot\mathbf r}-a^\dagger e^{-i\mathbf k\cdot\mathbf r}) = -E_0X_2

Time evolution (in the Heisenberg picture)

 1. a(t) = ae^{-i\omega t}

 2.  a^\dagger(t) = a^\dagger e^{i\omega t}

 3. E(t) = i E_0 \left\{ae^{-i(\omega t-\mathbf k\cdot\mathbf r)}-a^\dagger e^{i(\omega t-\mathbf k\cdot\mathbf r)}\right\}

For 1., \displaystyle \left[i\frac{H}{\hbar}t,\, a\right] = -i\omega t\cdot a, hence \displaystyle a(t) = e^{i\frac{H}{\hbar}t}ae^{-i\frac{H}{\hbar}t}=\sum_{n=0}^\infty\frac{1}{n!}({\rm C_{i\frac{H}{\hbar}t}})^n a = ae^{-i\omega t}.
2. is conjugate of 1. 3. follows directly from 1. and 2.

 4.  E(t) = E_0\left\{X_1\sin (\omega t-\mathbf k\cdot\mathbf r)-X_2\cos(\omega t-\mathbf k\cdot\mathbf r)\right\}

Rewriting 3. with \displaystyle a = \frac{1}{2}(X_1+iX_2),\,a^\dagger = \frac{1}{2}(X_1-iX_2)

Time dependent variance of E(t)

 5.  V(E(t)) = E_0^2\left\{V(X_1)\sin^2(\omega  t-\mathbf k\cdot\mathbf r)+V(X_2)\cos^2(\omega t-\mathbf k\cdot\mathbf r)-2V(X_1,\,X_2)\sin(\omega t-\mathbf k\cdot\mathbf r)\cos(\omega t-\mathbf k\cdot\mathbf r)\right\}

\langle E^2(t)\rangle = E_0^2\left[\sin^2(\omega t-\mathbf k\cdot\mathbf r)\langle X_1^2\rangle+cos^2(\omega t-\mathbf k\cdot\mathbf r)\langle X_2^2\rangle -\langle\{X_1,\,X_2\}\rangle\sin(\omega t-\mathbf k\cdot\mathbf r)\cos(\omega t -\mathbf k\cdot\mathbf r)\right]

\langle E(t)\rangle^2 = E_0^2\left[\sin^2(\omega t-\mathbf k\cdot\mathbf r)\langle X_1\rangle^2+\cos^2(\omega t-\mathbf k\cdot\mathbf r)\langle X_2\rangle^2-2\langle X_1\rangle\langle X_2\rangle\sin(\omega t-\mathbf k\cdot\mathbf r)\cos(\omega t-\mathbf k\cdot\mathbf r)\right]

Hence, V(E(t)) = \langle E^2(t)\rangle - \langle E(t)\rangle^2 results in 5.
where V(X_1) = \langle X_1^2\rangle - \langle X_1\rangle^2,\,\langle X_2^2\rangle - \langle X_2\rangle^2,\,V(X_1,\,X_2) = \frac{1}{2}\langle\{X_1,\,X_2\}\rangle-2\langle X_1\rangle\langle X_2\rangle

 6. \displaystyle V(X_1,\,X_2) = 0 when \displaystyle V(X_1)V(X_2) = \left|\frac{1}{2}\langle [X_1,\,X_2]\rangle\right|^2

Apply the Schroedinger's uncertainty relation \displaystyle V(X_1)V(X_2)\ge |V(X_1,\,X_2)|^2 + \left|\frac{1}{2}\langle [X_1,\,X_2]\rangle\right|^2

Especially when V(X_1) = e^{-2r},\,V(X_2) = e^{2r}, under the condition that V(X_1,\,X_2)=0, you get the next result.

 7.  \displaystyle V(E(t)) = E_0^2\left\{\cosh 2r+\sinh 2r\cdot\cos 2(\omega t-\mathbf k\cdot\mathbf r)\right\}

\displaystyle V(E(t)) = E_0^2\left\{e^{-2r}\left(\frac{1-\cos(2(\omega t-\mathbf k\cdot\mathbf r))}{2}\right) + e^{2r}\left(\frac{1+\cos2(\omega t-\mathbf k\cdot\mathbf r)}{2}\right)\right\}
 \displaystyle=E_0^2\left\{\frac{e^{2r}+e^{-2r}}{2}+\frac{e^{2r}-e^{-2r}}{2}\cos2(\omega t-\mathbf k\cdot\mathbf r)\right\}
 \displaystyle=E_0^2\left\{\cosh 2r+\sinh 2r\cdot\cos 2(\omega t-\mathbf k\cdot\mathbf r)\right\}

Hence, for r=0 (unsqueezed coherent state), the variance becomes constant whereas for r\ne 0 (squeezed coherent state), the variance flactuates with the angular velocity 2\omega.

 8. {\langle \alpha,\,\epsilon\mid}E(t){\mid \alpha,\,\epsilon\rangle} = i E_0 \left\{\alpha e^{-i(\omega t-\mathbf k\cdot\mathbf r)}-\alpha^* e^{i(\omega t-\mathbf k\cdot\mathbf r)}\right\}

This follows from 3. and {\langle \alpha,\,\epsilon\mid}a{\mid \alpha,\,\epsilon\rangle}=\alpha.

Especially for \displaystyle\alpha = \frac{1}{2}, it results in \langle E(t) \rangle = E_0\sin(\omega t-\mathbf k\cdot\mathbf r)

The following shows graphs of \langle E(t)\rangle \pm \sqrt{V(t)} for various rs.


Time evolution of squeezed states.

Schematic view of oscillation

Electric field operator  E = iE_0(a-a^\dagger)

Time evolution  E(t) = iE_0(ae^{-i\omega t}-a^\dagger e^{i\omega t})

Expected value  \langle E(t)\rangle = iE_0(\alpha e^{-i\omega t}-\alpha^* e^{i\omega t})= -2E_0{\rm Im}\,(\alpha e^{-i\omega t})

In terms of X_1,\,X_2, it corresponds to:
 \langle X_1(t)\rangle = (\alpha e^{-i\omega t}+\alpha^* e^{i\omega t}) = 2{\rm Re}\,(\alpha e^{-i\omega t})
 \displaystyle\langle X_2(t)\rangle = -i(\alpha e^{-i\omega t}-\alpha^* e^{i\omega t})=2{\rm Im}\,(\alpha e^{-i\omega t})=\frac{-1}{E_0}\langle E(t)\rangle

Define the rotated coordinates  Y_1+iY_2 : = (X_1+iX_2)e^{i\omega t_0} = 2ae^{i\omega t_0} for some fixed t_0.
Then at  t=t_0, Y_1(t=t_0) +iY_2(t=t_0) = 2 a e^{-i\omega t_0}e^{i\omega t_0} = 2a = X_1+iX_2. Hence,
 \langle Y_1(t_0)\rangle = \langle X_1 \rangle = 2 {\rm Re}\,\alpha,\ V(Y_1(t_0)) = V(X_1)
 \langle Y_2(t_0)\rangle = \langle X_2 \rangle = 2 {\rm Im}\,\alpha,\ V(Y_2(t_0)) = V(X_2)

These results can be summarized in the following diagram.

3.7.1 Squeezed State

Photon number fluctuation for the squeezed state {\mid \alpha,\,r\rangle}.

 1. \langle n \rangle = \sinh^2 r + |\alpha|^2
 2. V(n) = \langle n^2\rangle - \langle n\rangle^2 = \langle n\rangle + |\alpha|^2(\cosh 2r-\sinh 2r\cos 2\theta-1)+\sinh^2r\cosh 2r  where \alpha = |\alpha|e^{i\phi}

For 1., \langle n \rangle = {\langle 0 \mid}S^\dagger(r)D^\dagger(\alpha)a^\dagger aD(\alpha)S(r){\mid 0\rangle}={\langle 0 \mid}S^\dagger(r)(a^\dagger+\alpha^*)(a+\alpha)S(r){\mid 0\rangle}
 ={\langle 0 \mid}S^\dagger(r)(a^\dagger a+|\alpha|^2)S(r){\mid 0\rangle}=\sinh^2r+|\alpha|^2

For 2., \langle n^2\rangle = {\langle 0 \mid}S^\dagger(r)D^\dagger(\alpha)a^\dagger aa^\dagger aD(\alpha)S(r){\mid 0\rangle}
 ={\langle 0 \mid}S^\dagger(r)D^\dagger(\alpha)a^{\dagger 2} a^2D(\alpha)S(r){\mid 0\rangle}+\langle n\rangle since a\dagger a a^\dagger a = a^\dagger(a^\dagger a + 1)a = a^{\dagger 2}a^2 + a^\dagger a

Hence, \langle n^2\rangle-\langle n\rangle={\langle 0 \mid}S^\dagger(r)(a^\dagger+\alpha^*)^2(a+\alpha)^2S(r){\mid 0\rangle}
 ={\langle 0 \mid}S^\dagger(r)\left[a^{\dagger 2}a^2+2\alpha a^{\dagger 2}a+2\alpha^*a^{2}a^\dagger + \alpha^2a^{\dagger 2}+\alpha^{*2}a^2+4|\alpha|^2a^\dagger a+2\alpha^*\alpha^2a^\dagger + 2\alpha^2\alpha^{*2}a+|\alpha|^4\right]S(r){\mid 0\rangle}
 ={\langle 0 \mid}\left[(a^\dagger\cosh r-a\sinh r)^2(a\cosh r-a^\dagger\sinh r)^2+\left\{\alpha^2(a^\dagger\cosh r-a\sinh r)^2 + {\rm (Conjugate)}\right\}+4|\alpha|^2(a^\dagger\cosh r-a\sinh r)(a\cosh r-a^\dagger\sinh r)+|\alpha|^4\right]{\mid 0\rangle}
 ={\langle 0 \mid}\left[a^2a^{\dagger 2}\sinh^4r+aa^\dagger aa^\dagger\sinh^2r\cosh^2r-\left\{\alpha^2aa^\dagger\sinh r\cosh r+ {\rm (Conjugate)}\right\}+4|\alpha|^2aa^\dagger\sinh^2r+|\alpha|^4\right]{\mid 0\rangle}
 =2\sinh^4r+\sinh^2r\cosh^2r-2|\alpha|^2\cos2\phi\sinh r\cosh r+4|\alpha|^2\sinh^2r+|\alpha|^4
 since {\langle 0 \mid}a^2a^{\dagger 2}{\mid 0\rangle}=2,\ {\langle 0 \mid}aa^{\dagger}aa^{\dagger}{\mid 0\rangle}={\langle 0 \mid}aa^{\dagger}{\mid 0\rangle}=1

As a result, V(n)-\langle n\rangle =2|\alpha|^2(\sinh^2 r-\cos2\phi\sinh r\cosh r)+\sinh^4r+sinh^2r\cosh^2r
 = |\alpha|^2(\cosh 2r-\sinh 2r\cos 2\phi-1)+\sinh^2r\cosh 2r
 since 2\sinh^2r=\sinh^2r+\cosh^2r-1=\cosh 2r-1,\ 2\sinh r\cosh r = \sinh 2r

From these results, you can see that V(n)=\langle n\rangle for r=0 (non-squeezed coherent state) since it obeys the Poisson distribution.

On the other hand, when r\ne 0:

for \phi = 0, V(n)-\langle n\rangle=|\alpha|^2(e^{-2r}-1)+\sinh^2r\cosh 2r < 0\ (|\alpha|^2 \gg \sinh^2r\cosh 2r). It becomes the sub-Poissson.

for \displaystyle\phi = \frac{\pi}{2}, V(n)-\langle n\rangle=|\alpha|^2(e^{2r}-1)+\sinh^2r\cosh 2r > 0\ (|\alpha|^2 \gg \sinh^2r\cosh 2r). It becomes the super-Poissson.

Especially, for \alpha = 0 (Squeezed vacuum)], V(n)-\langle n\rangle=\sinh^2r\cosh 2r \ge 0. It's always the super-Poission.