めもめも

このブログに記載の内容は個人の見解であり、必ずしも所属組織の立場、戦略、意見を代表するものではありません。

Calculations on Coherent States and Squeezed States (4)

Quantum Optics

Quantum Optics

This is intended to fill some gaps in calculation details in the book above.

5.1.1 Degenerate Parametric Amplifier

Preparation: basics of the interaction picture

Suppose that the Hamiltonian consists of the time-independent part H_0 plus the time-dependent interaction part V(t).

 H=H_0+V(t)

Define the state vector and the interaction term in the interaction picture in conjunction with the ones in the Schroedinger picture

 \displaystyle{\mid\Psi_I(t)\rangle} := e^{\frac{i}{\hbar}H_0t}{\mid\Psi(t)\rangle}

 \displaystyle V_I(t) := e^{\frac{i}{\hbar}H_0t}V(t)e^{-\frac{i}{\hbar}H_0t}

You can prove that they follow the equation of motion below.

 \displaystyle \frac{d}{dt}{\mid\Psi_I(t)\rangle} = -\frac{i}{\hbar}V_I(t){\mid\Psi_I(t)\rangle}

To calculate the expectation value for an operator O, define the operator in the interaction picture and combine it with the state in the interaction picture.

 \displaystyle O_I(t) := e^{\frac{i}{\hbar}H_0t}Oe^{-\frac{i}{\hbar}H_0t}

 \displaystyle \langle O(t)\rangle = {\langle\Psi_I(t)\mid}O_I(t){\mid\Psi_I(t)\rangle}

Since the operator in the interaction picture is the same as the one in the Hisenberg picture with H_0, it follows the equation of motion below.

 \displaystyle \frac{d}{dt}O_I(t) = \frac{i}{\hbar}[H_0, O_I(t)]

In the special case, when the interaction operator V_I(t) and your operators O_I(t) in the interaction picture are time-independent, you have the following relationships.

 \displaystyle{\mid\Psi_I(t)\rangle} = e^{-\frac{i}{\hbar}V_It}{\mid\Psi(0)\rangle}

 \displaystyle \langle O(t)\rangle = {\langle\Psi(0)\mid}e^{\frac{i}{\hbar}V_It}O_Ie^{-\frac{i}{\hbar}V_It}{\mid\Psi(0)\rangle} --- (4.1)

Especially, the latter means that the operator O in the Heisenberg picture is obtained as

 \displaystyle O_H(t) = e^{\frac{i}{\hbar}V_It}O_Ie^{-\frac{i}{\hbar}V_It} --- (4.2)

Hence it follows the equations of motion below.

 \displaystyle \frac{d}{dt}O_H(t) = \frac{i}{\hbar}\left[V_I, O_H(t) \right] --- (4.3)

Degenerate Parametric Amplifier

 \displaystyle H_0=\hbar\omega a^\dagger a

 \displaystyle V(t) = -\frac{i\hbar}{2}\chi(a^2e^{2i\omega t}-a^{\dagger 2}e^{-2i\omega t})

Using the relationship (1.1), you can prove that:

 \displaystyle V_I(t) = -\frac{i\hbar}{2}\chi(a^2-a^{\dagger 2})

So this is a special case of the time-independent V_I.

Calculate a,\,a^\dagger in the interaction picture.

 \displaystyle \frac{d}{dt}a_I(t) = \frac{i}{\hbar}[H_0,a_I(t)] = e^{\frac{i}{\hbar}H_0t}  \frac{i}{\hbar}[H_0,a]   e^{-\frac{i}{\hbar}H_0t} = -i\omega a_I(t)

 \displaystyle \frac{d}{dt}a^\dagger_I(t) = \frac{i}{\hbar}[H_0,a^\dagger_I(t)] = e^{\frac{i}{\hbar}H_0t}  \frac{i}{\hbar}[H_0,a^\dagger]   e^{\frac{i}{\hbar}H_0t} = i\omega a^\dagger_I(t)

Hence,

 a_I(t) = ae^{-i\omega t},\ a^\dagger_I(t) = a^\dagger e^{i\omega t}

Now we define the rotated coordinates at a fixed time t=t_0:

 Y_1+iY_2 = (X_1+iX_2)e^{i\omega t_0} = 2ae^{i\omega t_0}

Convert it to the interaction picture and set t=t_0.

 Y_{1I}(t_0)+iY_{2I}(t_0) = 2a_I(t_0)e^{i\omega t_0} = 2a = X_1+iX_2

This means that the (time-independent) operators X_1=a+a^\dagger and X_2=-i(a-a^\dagger) represent the rotated coordinates at t=t_0 in the interaction picture.

Now you can use (4.2) and (4.3) to figure out the rotated coordinates in the Heisenberg picture to understand the physical effects on the initial state {\mid\Psi_S(0)\rangle}.

 \displaystyle \frac{d}{dt}X_{1H}(t) = \frac{i}{\hbar}\left[V_I,X_{1H}(t)\right] = e^{\frac{i}{\hbar}V_It} \frac{i}{\hbar}\left[V_I,X_1\right]e^{-\frac{i}{\hbar}V_It}

  \displaystyle= e^{\frac{i}{\hbar}V_It}\frac{1}{2}\chi\left[a^2-a^{\dagger 2},a+a^\dagger\right]e^{-\frac{i}{\hbar}V_It}=e^{\frac{i}{\hbar}V_It} 2(a+a^\dagger) e^{-\frac{i}{\hbar}V_It}=\chi X_{1H}

Likewise,

 \displaystyle \frac{d}{dt}X_{2H}(t) = -\chi X_{2H}

Hence,

 \displaystyle X_{1H}(t) = e^{\chi t} X_1

 \displaystyle X_{2H}(t) = e^{-\chi t} X_2

So you can see the squeezing effect on the rotated coordinates.

Since X_1,\,X_2 are the rotated coordinates in the interaction picture, and they are time-independent, you can apply (4.1) to calculate the expectation value as

 \langle X_1\rangle = {\langle\Psi(0)\mid}e^{\frac{i}{\hbar}V_It}X_1e^{-\frac{i}{\hbar}V_It}{\mid\Psi(0)\rangle}

 \langle X_2\rangle = {\langle\Psi(0)\mid}e^{\frac{i}{\hbar}V_It}X_2e^{-\frac{i}{\hbar}V_It}{\mid\Psi(0)\rangle}

And now you can see that the time evolution \displaystyle e^{-\frac{i}{\hbar}V_It} has the same effect as the squeeze operator S(-\chi t)

 \displaystyle e^{-\frac{i}{\hbar}V_It} = e^{-\frac{\chi t}{2}(a^2-a^{\dagger 2})} = S(-\chi t)

This explains the squeezing effect obtained above.