めもめも

このブログに記載の内容は個人の見解であり、必ずしも所属組織の立場、戦略、意見を代表するものではありません。

Derivation of the gauge-independent relation between the phase and the electric field

The effective wavefunction \psi(\mathbf x, t) and the charge current \mathbf J are given as:

 \displaystyle \psi(\mathbf x, t) = e^{i\theta(\mathbf x, t)}\sqrt{n_s(\mathbf x, t)} --- (3.4)

 \displaystyle \mathbf J = q_sn_s\left(\frac{\hbar}{m_s}\nabla\theta -\frac{q_s}{m_s}\mathbf A\right) ---(3.13)

The wavefunction follows the Schrödinger equation:

  \displaystyle i\hbar\partial_t\psi(\mathbf x, t) = \left[\frac{1}{2m_s}\left\{-i\hbar\nabla-q_s\mathbf A(\mathbf x, t)\right\}^2 + q_sv(\mathbf x,t)\right]\psi(\mathbf x, t) --- (3.5)

Without losing the generality, we can take the Coulomb gauge:

 \nabla\cdot\mathbf A=0 --- (1)

Now, we assume that the charge density n_s = |\psi(\mathbf x, t)|^2 is constant and uniform:

  \displaystyle \psi(\mathbf x,t) = e^{i\theta(\mathbf x,t)}\sqrt{n_s}

In this case, the currents should be divergence-free \nabla\cdot\mathbf J=0. Then, by applying \nabla on (3.13), we have:

 \nabla^2\theta=0 --- (2)

Also, we have:

 \displaystyle\left\{-i\hbar\nabla-q_s\mathbf A(\mathbf x,t)\right\}\psi(\mathbf x,t) = \left\{\hbar\nabla\theta(\mathbf x,t)-q_s\mathbf A(\mathbf x,t)\right\}\psi(\mathbf x,t)

By using (1) and (2), we also have:

 \displaystyle\left\{-i\hbar\nabla-q_s\mathbf A(\mathbf x,t)\right\}^2\psi(\mathbf x,t) = \left\{\hbar\nabla\theta(\mathbf x,t)-q_s\mathbf A(\mathbf x,t)\right\}^2\psi(\mathbf x,t)

  \displaystyle = \frac{m_s^2}{q_s^2n_s^2}\mathbf J(\mathbf x,t)^2\psi(\mathbf x,t)

(3.5) becomes:

 \displaystyle-\hbar\partial_t\theta(\mathbf x,t) = \frac{m_s}{2q_s^2n_s^2}\mathbf J(\mathbf x,t)^2 + q_sv(\mathbf x,t) --- (3)

Since this is valid only on the Coulomb gauge, we will rewrite it as a gauge-independent expression.

The gauge-invariant phase \varphi(\mathbf x,t) is defined as:

 \displaystyle \varphi(\mathbf x,t)-\varphi(\mathbf x_0,t) = \left\{\theta(\mathbf x,t)-\theta(\mathbf x_0,t)\right\} -\frac{q_s}{\hbar}\int_{\mathbf x_0}^\mathbf x\mathbf A(\mathbf r,t)\cdot d\mathbf l --- (3.16)

As the RHS of (3.16) is gauge-invariant, we can take the Coulomb gauge and use (3) without breaking the gauge-invariance of LHS. By applying \partial_t on (3.16), and assuming that the currents are uniform:

 \displaystyle \mathbf J(\mathbf x, t) = \mathbf J(\mathbf x_0, t)

we have:

 \displaystyle\partial_t\varphi(\mathbf x,t) - \partial_t\varphi(\mathbf x_0,t) = -\frac{q_s}{\hbar}\left\{v(\mathbf x,t)-v(\mathbf x_0,t)\right\}  - \frac{q_s}{\hbar}\int_{\mathbf x_0}^\mathbf x\partial_t\mathbf A(\mathbf r,t)\cdot d\mathbf l

  \displaystyle = \frac{q_s}{\hbar}\int_{\mathbf x_0}^\mathbf x\left\{-\nabla v(\mathbf r, t)-\partial_t\mathbf A(\mathbf r,t)\right\}\cdot d\mathbf l = \frac{q_s}{\hbar}\int_{\mathbf x_0}^\mathbf x\mathbf E(\mathbf r, t)\cdot d\mathbf l

where we used the relationship between the electric field \mathbf E and potentials (\mathbf A,\,v):

 \displaystyle \mathbf E(\mathbf x,t) = -\nabla v(\mathbf x,t)-\partial_t\mathbf A(\mathbf x,t)

Because \mathbf E(\mathbf x,t) is gauge-invariant, the following relationship is gauge-independent:

 \displaystyle \partial_t\varphi(\mathbf x,t) - \partial_t\varphi(\mathbf x_0,t) = \frac{q_s}{\hbar}\int_{\mathbf x_0}^\mathbf x\mathbf E(\mathbf r,t)\cdot d\mathbf l = -\frac{q_s}{\hbar}V

Where V := V(\mathbf x)-V(\mathbf x_0) is a voltage (electric potential difference) between the two points (\mathbf x,\, \mathbf x_0).

By defining:

 \displaystyle\delta\varphi(t) := \varphi(\mathbf x,t)-\varphi(\mathbf x_0,t)

 \displaystyle\Phi_0 := \frac{h}{|q_s|} = -\frac{2\pi\hbar}{q_s}

We have:

 \displaystyle\frac{d}{dt}\delta\varphi(t) = \frac{2\pi}{\Phi_0}V --- (4)

Hence, if we apply a constant voltage V between two points, the phase difference grows as:

 \displaystyle\delta\varphi(t) = \frac{2\pi}{\Phi_0}Vt + \delta\varphi(0)

Note:

In the textbook, it says "We have to complete our derivation to regard more general conditions!" on p.27. In the derivation of (4), we used the following two assumptions:

  • The charge density n_s = |\psi(\mathbf x,t)|^2 is constant and uniform (independent of  (\mathbf x,\, t)).
  • The currents \mathbf J(\mathbf x,t) are uniform (independent of \mathbf x).

These are the same assumptions used in the next section "3.7 Josephson Junctions". So we can use the relationship (4) in that section.