めもめも

このブログに記載の内容は個人の見解であり、必ずしも所属組織の立場、戦略、意見を代表するものではありません。

Detailed derivation of the Input-Output theory

Basic definitions

Think of a system consisted of:

  • A long waveguide with length d accommodating a photon field \hat b_k.
  • A small resonator at x=0 accommodating an electric oscillation \hat a.

that has the RWA Hamiltonian (5.60):

 \displaystyle H_{\rm RWA} = \omega\hat a^\dagger\hat a + \sum_k\left(g_k\hat a\hat b_k^\dagger + g_k^*\hat a^\dagger\hat b_k\right) + \sum_k\omega_k\hat b_k^\dagger\hat b_k --- (5.60)

where we use the unit system with \hbar = 1. So, the momentum p and the wavenumber k are the same p=k. (In general p = \hbar k.)

The wavelength of the photon field is numbered as \displaystyle \lambda_n \sim \frac{d}{n}. So, the wavenumber is counted as:

 \displaystyle k = p = \frac{2\pi}{\lambda_n} = \frac{2\pi}{d}n

Hence, assuming that d \gg 1, we can replace \displaystyle \frac{2\pi}{d}\sum_k \sim \int_{-\infty}^\infty dk = 2\int_0^\infty \left|\frac{dk}{d\omega}\right|d\omega.

Applying it to the last term of H_{\rm RWA}, we have:

 \displaystyle \sum_k\omega_k\hat b_k^\dagger\hat b_k \sim  \frac{d}{\pi}\int_0^\infty \omega\hat b(\omega)^\dagger\hat b(\omega)\left|\frac{dk}{d\omega}\right|\,d\omega

So the operator \hat b_k has a scale dependency as \displaystyle \hat b \sim \frac{1}{\sqrt{d}}. From the second term of H_{\rm RWA}, the coupling constant g_k has the same scale dependency \displaystyle g_k \sim \frac{1}{\sqrt{d}}

Now we define \displaystyle J^{\rm QO}(\omega) := 2d|g(\omega)|^2\left|\frac{dk}{d\omega}\right| as a scale independent spectral function. Then, we have the relationship (5.62):

 \displaystyle \frac{1}{2\pi}\int_0^{\infty} J^{\rm QO}(\omega)e^{-i\omega t}\,d\omega \sim \sum_k |g_k|^2e^{-i\omega_k t} =: K(t) --- (5.62)

Also, in the following discussion, we use the Fourier transformation of the Heaviside step function \Theta(t):

 \displaystyle \int_0^\infty e^{i\omega u}\,du = \int_{-\infty}^\infty\Theta(u)e^{i\omega u}\,du = \pi\delta(\omega) + i\,{\mathcal PV}\left(\frac{1}{\omega}\right) --- (0)

Note that (0) is a relationship as a hyperfunction. So it's valid only when they are combined with the operation \displaystyle \int_{-\infty}^\infty f(\omega)[*]\,d\omega.

Formal solution of the photon field \hat b_k(t)

From (5.60), we have the following Heisenberg equations (B.22):

 \displaystyle \frac{d}{dt}\hat a(t) = -i\omega\hat a(t) - i\sum_k g_k^*\hat b_k(t) --- (1)

 \displaystyle \frac{d}{dt}\hat b_k(t) = -i\omega_k\hat b_k(t) - ig_k\hat a(t) --- (2)

Define \hat f(t) as \displaystyle \hat b_k(t) = e^{-i\omega_k(t-t_0)}\left\{\hat b_k(t_0)+\hat f(t)\right\} with the initial condition \hat f(t_0)=0. Then, from (2), we have:

 \displaystyle e^{-i\omega_k(t-t_0)}\frac{d}{dt}\hat f(t) = -ig_k\hat a(t)

 \displaystyle\therefore\, \frac{d}{dt}\hat f(t) = -i e^{i\omega_k(t-t_0)}g_k\hat a(t)

 \displaystyle\therefore\, \hat f(t) = -ig_ke^{-i\omega_kt_0}\int_{t_0}^te^{i\omega_k \tau}\hat a(\tau)\,d\tau

 \displaystyle\therefore\, \hat b_k(t) = e^{-i\omega_k(t-t_0)}\hat b_k(t_0) -ig_k\int_{t_0}^t e^{-i\omega_k(t-\tau)}\hat a(\tau)\,d\tau --- (B.23)

A Langevin equation for the resonator

By substituting (B.23) into (1), we have:

 \displaystyle \frac{d}{dt}\hat a(t) = -i\omega\hat a(t) - i\sum_kg_k^*e^{-i\omega_k(t-t_0)}\hat b_k(t_0) - \int_{t_0}^t\sum_k |g_k|^2e^{-i\omega_k(t-\tau)}\hat a(\tau)\,d\tau

 \displaystyle \therefore\, \frac{d}{dt}\hat a(t) = -i\omega\hat a(t) - i \hat\xi(t) -\int_{t_0}^tK(t-\tau)\hat a(\tau)\,d\tau --- (5.61)

where \displaystyle \hat\xi(t) := \sum_kg_k^*e^{-i\omega_k(t-t_0)}\hat b_k(t_0).

Markovian approximation

We assume that the resonator resonates with the photon field with some frequency \omega' with a slow modulation \hat a_{\rm slow}(t).

 \hat a(t) = \hat a_{\rm slow}(t)e^{-i\omega' t}

and the contribution to the integration in (5.61) is dominated by the oscillation e^{-i\omega' t}. So,

 \displaystyle \int_{t_0}^tK(t-\tau)\hat a(\tau)\,d\tau \simeq \hat a_{\rm slow}(t)\int_{t_0}^tK(t-\tau)e^{-i\omega'\tau}\,d\tau

  \displaystyle=\hat a_{\rm slow}(t)e^{-i\omega't}\int_{0}^{t-t_0}K(u)e^{i\omega'u}\,du\ (u:=t-\tau)

  \displaystyle=\hat a(t)\int_{0}^{t-t_0}K(u)e^{i\omega'u}\,du

In the limit t_0 \to -\infty, we have:

 \displaystyle \int_{0}^{t-t_0}K(u)e^{i\omega'u}\,du = \frac{1}{2\pi}\int_0^\infty J^{\rm QO}(\omega)\left\{\int_0^{\infty}e^{i(\omega'-\omega)u}\,du\right\}d\omega

  \displaystyle = \frac{1}{2\pi}\int_0^\infty J^{\rm QO}(\omega)\left\{
\pi\delta(\omega'-\omega) + i\,{\mathcal PV}\left(\frac{1}{\omega'-\omega}\right)\right\}\,d\omega

  \displaystyle \simeq \frac{1}{2\pi}\int_{-\infty}^\infty J^{\rm QO}(\omega)\left\{
\pi\delta(\omega'-\omega) + i\,{\mathcal PV}\left(\frac{1}{\omega'-\omega}\right)\right\}\,d\omega

   (\because Contribution from around \omega\sim\omega' is dominant.)

  \displaystyle = \frac{1}{2}J^{\rm QO}(\omega') +i \frac{1}{2\pi}\lim_{\epsilon\to 0+}\int_{|\omega-\omega'|>\epsilon}\frac{J^{\rm QO}(\omega)}{\omega'-\omega}\,d\omega

  \displaystyle = \frac{\kappa}{2} + i\delta \omega --- (B.29)

where,

 \displaystyle\kappa := J^{\rm QO}(\omega')

 \displaystyle\delta\omega :=  \frac{1}{2\pi}\lim_{\epsilon\to 0+}\int_{|\omega-\omega'|>\epsilon}\frac{J^{\rm QO}(\omega)}{\omega'-\omega}\,d\omega --- (B.30)

By combining these results, we have:

 \displaystyle \int_{t_0}^tK(t-\tau)\hat a(\tau)\,d\tau \simeq \left(i\delta\omega + \frac{\kappa}{2}\right)\hat a(t) --- (B.26)

And from (5.61), we have:

 \displaystyle \frac{d}{dt}\hat a(t) = -\left\{i(\omega + \delta\omega)+\frac{\kappa}{2}\right\}\hat a(t)-i\hat\xi(t)

From this result, you can see that \hat a(t) oscillates as \displaystyle\hat a(t) \sim \hat a(0)e^{-\frac{\kappa}{2}t} e^{-i(\omega+\delta\omega)t}. So,

 \omega' = \omega + \delta\omega.

This means that \omega' is (implicitly) decided from the consistency condition with (B.30):

 \displaystyle\delta\omega = \omega' - \omega =  \frac{1}{2\pi}\lim_{\epsilon\to 0+}\int_{|\omega-\omega'|>\epsilon}\frac{J^{\rm QO}(\omega)}{\omega'-\omega}\,d\omega

Solution of the resonator \hat a(t)

Now we have the Langevin equation for the resonator:

 \displaystyle \frac{d}{dt}\hat a(t) = -\left(i\omega'+\frac{\kappa}{2}\right)\hat a(t)-i\hat\xi(t) --- (3)

  \displaystyle \hat\xi(t) := \sum_kg_k^*e^{-i\omega_k(t-t_0)}\hat b_k(t_0) --- (4)

Define \hat f(t) as \displaystyle \hat a(t) = e^{-i\left(\omega'+\frac{\kappa}{2}\right)(t-t_0)}\hat f(t). Then from (3), we have:

 \displaystyle e^{-i\left(\omega'+\frac{\kappa}{2}\right)(t-t_0)}\frac{d}{dt}\hat f(t) = -i\hat\xi(t)

 \displaystyle\therefore\,\frac{d}{dt}\hat f(t) = -i e^{i\left(\omega'+\frac{\kappa}{2}\right)(t-t_0)}\hat\xi(t)
=-i\sum_k g_k^* e^{i\left\{(\omega'-\omega_k)+\frac{\kappa}{2}\right\}(t-t_0)} \hat b_k(t_0)

 \displaystyle\therefore\,\hat f(t) = -i \sum_k g_k^* \frac{e^{i\left\{(\omega'-\omega_k)+\frac{\kappa}{2}\right\}(t-t_0)}}{i(\omega'-\omega_k)+\frac{\kappa}{2}} \hat b_k(t_0) +C

Hence, the solution \hat a(t) is:

 \displaystyle \hat a(t) = Ce^{-i\left(\omega'+\frac{\kappa}{2}\right)(t-t_0)} -i \sum_k g_k^* \frac{e^{i\omega_k(t-t_0)}}{i(\omega'-\omega_k)+\frac{\kappa}{2}} \hat b_k(t_0) --- (B.32)

The constant C is determined with the initial condition.

From this result, you can see that the contribution from coupling g_k is dominant around the resonant frequency \omega_k \sim \omega'. So changing the coupling strength g_k outside \omega_k \sim \omega' doesn't change the behavior of the system, and we can safely assume that g_k is almost constant. In terms of J^{\rm QO}(\omega), this means that J^{\rm QO}(\omega) \simeq J^{\rm QO}(\omega') = \kappa

Then, compared to the free plane wave solution \displaystyle \sum_k e^{-i\omega_k(t-t_0)}\hat b_k(t_0), \displaystyle \hat\xi(t) := \sum_kg_k^*e^{-i\omega_k(t-t_0)}\hat b_k(t_0) is rescaled with g_k \propto \sqrt{\kappa}.

So, we define \displaystyle\hat b^{\rm in}(t) := \frac{1}{\sqrt{\kappa}}\hat\xi(t) to have a renormalized operator, and (3) becomes:

 \displaystyle \frac{d}{dt}\hat a(t) = -\left(i\omega'+\frac{\kappa}{2}\right)\hat a(t) -i\sqrt{\kappa}\hat b^{\rm in}(t) --- (5.64)

Note that in the discussions above, we used the initial condition at t_0 \to -\infty. As a result, \displaystyle\hat\xi(t) corresponds to the input photon generated at t=t_0. So we named \hat b^{\rm in}(t) to indicate the input photon.

Input-Output relations

It's also possible to consider the boundary condition at t_0 \to \infty in the Markovian approximation. In this case, the calculation to get (B.29) becomes:

 \displaystyle \int_{0}^{t-t_0}K(u)e^{i\omega'u}\,du = \frac{1}{2\pi}\int_{0}^\infty J^{\rm QO}(\omega)\left\{\int_0^{-\infty}e^{i(\omega'-\omega)u}\,du\right\}d\omega

  \displaystyle = -\frac{1}{2\pi}\int_{0}^\infty J^{\rm QO}(\omega)\left\{\int_0^{\infty}e^{i(\omega-\omega')u}\,du\right\}d\omega

  \displaystyle \simeq - \frac{1}{2\pi}\int_{-\infty}^\infty J^{\rm QO}(\omega)\left\{
\pi\delta(\omega-\omega') + i\,{\mathcal PV}\left(\frac{1}{\omega-\omega'}\right)\right\}\,d\omega

  \displaystyle = -\frac{1}{2}J^{\rm QO}(\omega') +i \frac{1}{2\pi}\lim_{\epsilon\to 0+}\int_{|\omega-\omega'|>\epsilon}\frac{J^{\rm QO}(\omega)}{\omega'-\omega}\,d\omega

  \displaystyle = -\frac{\kappa}{2} + i\delta \omega --- (B.29)'

Note that we used the fact that \delta(x) is an even function and \displaystyle{\mathcal PV}\left(\frac{1}{x-x'}\right) is an odd function.

Compared to (B.29), (B.29)' has an opposite sign for \kappa, and (5.64) becomes:

 \displaystyle \frac{d}{dt}\hat a(t) = -\left(i\omega'-\frac{\kappa}{2}\right)\hat a(t) -i\sqrt{\kappa}\hat b^{\rm out}(t) --- (5.64)'

where \displaystyle\sqrt{\kappa}\hat b^{\rm out}(t) = \sum_kg_k^*e^{-i\omega_k(t-t_0)}\hat b_k(t_0) corresponds to the photon field pulling back to the current time t from the final status at t=t_0 \sim \infty.

By equating (5.64) and (5.64)', we have:

 \hat b^{\rm out}(t) = \hat b^{\rm in}(t) - i\sqrt{\kappa}\hat a(t) --- (B.38)

Quantum Information and Quantum Optics with Superconducting Circuits - Exercise Solutions (Chapter 7)

7.1

Using the unit system \hbar = 1 and adding constant \displaystyle \frac{\Delta}{2} to the total energy, the Hamiltonian is:

 \displaystyle \hat H = \sum_k \omega_k\hat a_k^\dagger \hat a_k + \frac{\Delta}{2}\sigma^z + \sum_k\left(g_k\sigma^+\hat a_k+g_k^*\hat a_k^\dagger\sigma^-\right) + \frac{\Delta}{2}

The anzatz is:

 \displaystyle \mid\psi(t)\rangle = c_1(t)\mid 1,{\rm vac}\rangle + \sum_k\psi_k(t)\mid 0, 1_k \rangle

where \displaystyle \mid 0, 1_k\rangle = \hat a_k^\dagger \mid 0, {\rm vac}\rangle

Then,

 \displaystyle \omega_k\hat a_k^\dagger \hat a_k \mid\psi(t)\rangle = \omega_k\psi_k(t)\mid 0, 1_k\rangle

 \displaystyle \frac{\Delta}{2}\sigma^z \mid\psi(t)\rangle = \frac{\Delta}{2}c_1(t)\mid 1, {\rm vac}\rangle - \frac{\Delta}{2} \psi_k(t)\mid 0,1_k\rangle

 \displaystyle g_k\sigma^+\hat a_k \mid\psi(t)\rangle = g_k\psi_k(t)\mid 1,{\rm vac}\rangle

 \displaystyle g_k^*\hat a_k^\dagger\sigma^- \mid\psi(t)\rangle = g_k^*c_1(t)\mid 0,1_k\rangle

Hence, from the Schroedinger equation \displaystyle i\frac{d}{dt}\mid\psi(t)\rangle = \hat H\mid\psi(t)\rangle, we have:

 \displaystyle i\dot c_1(t) = \Delta c_1(t) + \sum_k g_k\psi_k(t)

 \displaystyle i\dot \psi_k(t) = \omega_k\psi_k(t) + g_k^*c_1(t)

7.2

From (5.61), we have a Langevin equation for the qubit's amplitude.

 \displaystyle \frac{d}{dt}c_1(t) = -i\Delta c_1(t) - i\hat\xi(t)-\frac{1}{2\pi}\int_0^t\int J(\omega)e^{-i\omega(t-\tau)}c_1(\tau)\,d\omega\,d\tau

We ignore the input photons \hat\xi(t), and assume J(\omega)=2\pi\alpha\,(\omega\in \mathbb{R}), then,

 \displaystyle \frac{1}{2\pi}\int_0^t\int J(\omega)e^{-i\omega(t-\tau)}c_1(\tau)\,d\omega\,d\tau =  \alpha \int_0^t\int_{-\infty}^\infty e^{-i\omega(t-\tau)}c_1(\tau)\,d\omega\,d\tau

  \displaystyle = 2\pi\alpha\int_0^t\delta(t-\tau)c_1(\tau)\,d\tau = 2\pi\alpha c_1(t)

So, the decay rate is 2\pi\alpha and no Lamb shift.

7.3

 \displaystyle \rho_{\rm qb} = \begin{pmatrix}\rho_{11} & \rho_{10} \\ \rho_{01} & \rho_{00}\end{pmatrix} =
\begin{pmatrix} |\beta|^2e^{-\gamma t} & \alpha\beta^*e^{-i\Delta t-\frac{\gamma}{2}t} \\ \alpha^*\beta e^{i\Delta t-\frac{\gamma}{2}t} & 1 + (|\alpha|^2 -1)e^{-\gamma t}\end{pmatrix}

  \displaystyle = \begin{pmatrix} |\beta|^2e^{-\gamma t} & \alpha\beta^*e^{-i\Delta t-\frac{\gamma}{2}t} \\ \alpha^*\beta e^{i\Delta t-\frac{\gamma}{2}t} & 1 -|\beta|^2 e^{-\gamma t}\end{pmatrix}\ \left(\because |\alpha|^2+|\beta|^2 = 1\right)

Eigenvalues are \displaystyle \lambda_{\pm} = \frac{1\pm\sqrt{1-4|\beta|^2e^{-\gamma t}(1-e^{-\gamma t})}}{2}

At t=0 and t \to \infty, we have \lambda_{\pm} = 0, 1. So S=-(\lambda_-\log\lambda_- + \lambda_+\log\lambda_+)=0.

Defining \displaystyle f(t) = e^{-\gamma t}(1-e^{-\gamma t}) --- (1)

we have:

 \displaystyle \lambda_{\pm} = \frac{1\pm\sqrt{1-4|\beta|^2f(t)}}{2}

And,

 \displaystyle\frac{dS}{dt} = \frac{\partial S}{\partial \lambda_-}\frac{d\lambda_-}{df(t)}\frac{df(t)}{dt} +  \frac{\partial S}{\partial \lambda_+}\frac{d\lambda_+}{df(t)}\frac{df(t)}{dt}

  \displaystyle = \log\left(\frac{\lambda_+}{\lambda_-}\right)\frac{d\lambda_-}{df(t)}\frac{df(t)}{dt}\ \left(\because\,\frac{d\lambda_+}{df(t)} = -\frac{d\lambda_-}{df(t)}\right)

Hence, S becomes maximum at \displaystyle \frac{df(t)}{dt} = 0.

From (1), f(t) takes maximum \displaystyle f(t)=\frac{1}{4} when \displaystyle e^{-\gamma t} = \frac{1}{2}.

So, S takes maximum at \displaystyle \lambda_\pm = \frac{1\pm\sqrt{1-|\beta|^2}}{2}.

 \displaystyle \therefore\, \max S = -\frac{1-\sqrt{1-|\beta|^2}}{2}\log \frac{1-\sqrt{1-|\beta|^2}}{2}

          \displaystyle {}- \frac{1+\sqrt{1-|\beta|^2}}{2}\log \frac{1+\sqrt{1-|\beta|^2}}{2}

gist.github.com

7.4

???

7.5

I assume that g_k\sim gdk^{1/2} is a typo of g_k\sim gd^{-1/2}.

(1) When photons propagate both directions, we can use the relationship:

 \displaystyle \frac{2\pi}{d}\sum_k \sim \int_{-\infty}^\infty dk = 2\int_0^\infty \left|\frac{dk}{d\omega}\right|d\omega.

(cf. Detailed derivation of the Input-Output theory)

On the other hand, if photons propagate only one direction, the relationship above becomes:

 \displaystyle \frac{2\pi}{d}\sum_k \sim \int_{0}^\infty dk = \int_0^\infty \left|\frac{dk}{d\omega}\right|d\omega.

So,

 \displaystyle J^{\rm QO}(\omega) = 2\pi\sum_k|g_k|^2\delta(\omega-\omega_k) = \frac{|g|^2}{v}\int_0^\infty\delta(\omega-\omega_k)\,d\omega_k

 \displaystyle \therefore\,\gamma = \frac{|g|^2}{v}


(2) From (1), \displaystyle g_k = \frac{g}{\sqrt{d}} = \sqrt{\frac{\gamma v}{d}}. As the pre-factor of c_1(t) in (7.20) came from g_k, we have:

 \displaystyle\Psi_+^{\rm out}(0, t) = \Psi_+^{\rm in}(0,t)-i\sqrt{\frac{\gamma}{v}}c_1(t)


(3) Since \xi(x,t,t_0) contains only right-moving waves k>0,

 \displaystyle\xi (x,t,t_0) = \sum_{k>0} g_k e^{ikx-i\omega_k(t-t_0)}\psi_k(t_0)

So from the definition of \displaystyle\Psi_+(x,t,t_0),

 \displaystyle\Psi_+ (x,t,t_0) = \frac{1}{\sqrt{d}}\sum_{k>0} e^{ikx-i\omega_k(t-t_0)}\psi_k(t_0)

with the assumption \displaystyle g_k = \frac{g}{\sqrt{d}}, we have:

 \displaystyle\xi (x,t,t_0) = g\Psi_+(x,t,t_0) = \sqrt{\gamma v}\Psi_+(x,t,t_0)

Hence, from (7.16):

 \displaystyle i\dot c_1(t) = \left(\Delta'-i\frac{1}{2}\gamma\right)c_1(t) + \xi(0,t,t_0) --- (7.16)

we have:

 \displaystyle i\dot c_1(t) = \left(\Delta'-i\frac{1}{2}\gamma\right)c_1(t) + \sqrt{\gamma v}\Psi_+(0,t,t_0)

Defining f(t) as \displaystyle c_1(t) = f(t)e^{-i\left(\Delta'-i\frac{1}{2}\gamma\right)t}, we have:

 \displaystyle i\,\dot f(t)e^{-i\left(\Delta'-i\frac{1}{2}\gamma\right)t} = \sqrt{\gamma v}\Psi_+(0,t,t_0)

 \displaystyle\therefore f(t) = -i\sqrt{\gamma v}\int_{t_0}^t\Psi^{\rm in}_+(0,\tau)e^{i\left(\Delta'-i\frac{1}{2}\gamma\right)\tau}\,d\tau

 \displaystyle\therefore c_1(t) = -i\sqrt{\gamma v}\int_{t_0}^t\Psi^{\rm in}_+(0,\tau)e^{i\left(\Delta'-i\frac{1}{2}\gamma\right)(\tau-t)}\,d\tau

For \displaystyle \Psi_+^{\rm in}(0, t) = a_+e^{(-i\omega + 0^+)t}, we have:

 \displaystyle c_1(t) = -i\sqrt{\gamma v}a_+\int_{t_0}^te^{(-i\omega + 0^+)\tau}e^{i\left(\Delta'-i\frac{1}{2}\gamma\right)(\tau-t)}\,d\tau

  \displaystyle = -i\sqrt{\gamma v}a_+e^{(-i\omega+0^+)t}\frac{1}{i(\Delta'-\omega)+\frac{\gamma}{2}}

Hence,

 \displaystyle\Psi_+^{\rm out}(0, t) = \Psi_+^{\rm in}(0,t)-i\sqrt{\frac{\gamma}{v}}c_1(t)

  \displaystyle = a_+e^{(-i\omega + 0^+)t} -\gamma a_+e^{(-i\omega + 0^+)t}\frac{1}{i(\Delta'-\omega)+\frac{\gamma}{2}}

  \displaystyle = a_+e^{(-i\omega + 0^+)t}\left\{1-\gamma \frac{1}{i(\Delta'-\omega)+\frac{\gamma}{2}}\right\}

 \displaystyle\therefore\, T_\omega = 1-\gamma \frac{1}{i(\Delta'-\omega)+\frac{\gamma}{2}},\,R_\omega = 0


(4) When a qubit is placed at the end of a semi-infinite transmission line, we have only reflected photons. If we virtually (or mathematically) invert the direction of the reflected photons, it's the same as the chiral model discussed here. Note that we suppose that input photons are reflected not only by a qubit but also the end of the transmission line.

7.6

(1) \displaystyle H =\sum_{i=1}^N\Delta_i\mid i\rangle\langle i \mid + \sum_k\omega_k\hat a_k^\dagger\hat a_k + \sum_{i=1}^N\sum_k\left(\beta_ig_k\sigma^+_i\hat a_k + \beta^*_ig_k^*\sigma^-_i\hat a^\dagger\right)

 \displaystyle \mid\psi(t)\rangle = \sum_ic_i(t)\mid i,{\rm vac}\rangle + \sum_k\psi_k(t)\mid0,1_k\rangle

 \displaystyle H\mid\psi(t)\rangle = \sum_i\Delta_ic_i(t)\mid i,{\rm vac}\rangle + \sum_k\omega_k\psi_k(t)\mid 0,1_k\rangle
        \displaystyle {}+\sum_{i,k}\left\{\beta_ig_k\psi_k(t)\mid i,{\rm vac}\rangle + \beta^*_ig_k^*c_i(t)\mid 0,1_k\rangle\right\}

Hence, from the Schroedinger equation \displaystyle i\frac{d}{dt}\mid\psi(t)\rangle = H \mid\psi(t)\rangle, we have:

 \displaystyle i\dot c_i(t) = \Delta_ic_i(t) + \sum_k\beta_ig_k\psi_k(t) --- (1-1)

 \displaystyle i\dot \psi_k(t) = \omega_k\psi_k(t) + \sum_n\beta_i^*g_k^*c_i(t) --- (1-2)


(2) Defining f(t) as \displaystyle\psi_k(t) = e^{-i\omega_k(t-t_0)}\left\{\psi_k(t_0)+f(t)\right\} with a initial condition f(t_0)=0, from(1-2), we have:

 \displaystyle\dot f(t) = -ie^{i\omega_k(t-t_0)}\sum_i\beta_i^*g_k^*c_i(t)

 \displaystyle\therefore\, f(t) = -i\sum_i\beta_i^*g_k^*e^{-i\omega_kt_0}\int_{t_0}^te^{i\omega_k\tau}c_i(\tau)\,d\tau

 \displaystyle\therefore\, \psi_k(t) = e^{-i\omega_k(t-t_0)}\psi_k(t_0)-i\sum_i\beta_i^*g_k^*\int_{t_0}^te^{-i\omega_k(t-\tau)}c_i(\tau)\,d\tau --- (2-1)

Substituting this result into (1-1), we have:

 \displaystyle\dot c_i(t) = -i\Delta_ic_i(t)-i\beta_i\xi(t) - |\beta_i|^2\int_{t_0}^tK(t-\tau)c_i(\tau)\,d\tau

where

 \displaystyle \xi(t) = \sum_kg_ke^{-i\omega_k(t-t_0)}\psi_k(t_0)

 \displaystyle K(t) = \sum_k|g_k|^2e^{-i\omega_kt}

By applying the Markovian approximation, we have:

 \displaystyle\int_{t_0}^tK(t-\tau)c_i(\tau)\,d\tau = \frac{\gamma_i}{2} + i\delta\omega_i

where \displaystyle \gamma_i = J^{\rm CO}(\omega'_i),\,\delta\omega_i = \frac{1}{2\pi}\lim_{\epsilon\to 0+}\int_{|\omega_i-\omega'_i|>\epsilon}\frac{J^{\rm QO}(\omega)}{\omega'_i-\omega}\,d\omega

 \displaystyle\therefore\,\dot c_i(t) = -\left\{i\left(\Delta_i + |\beta_i|^2\delta\omega_i\right)+ |\beta_i|^2\frac{\gamma_i}{2}\right\}c_i(t) - i\beta_i\xi(t)

    \displaystyle = -\left(i\Delta'_i+\frac{|\beta_i|^2\gamma_i}{2}\right)c_i(t)-i\beta_i\xi(t) --- (2-2)


(3) From (2-1), we have:

 \displaystyle \Psi_\pm(x,t) := \frac{1}{\sqrt{d}} \sum_{k>0}e^{\pm ikx}\psi_k(t)

  \displaystyle = \Psi_\pm(x,t,t_0) - i \sum_i\beta_i^*\sum_{k>0}\int_{t_0}^tg_k^*\frac{e^{\pm ikx-i\omega_k(t-\tau)}}{\sqrt{d}}c_i(\tau)\,d\tau

From the assumption \displaystyle g_k = \frac{g}{\sqrt{d}}, based on the same argument as (7.18), we have \displaystyle \gamma_i = \frac{2|g|^2}{v} := \gamma. Then, by following the same argument (7.19) and (7.20), we have:

 \displaystyle\Psi_\pm^{\rm out}(0, t) = \Psi_\pm^{\rm in}(0,t) - i\sqrt{\frac{\gamma}{2v}}\sum_i\beta_i^*c_i(t) --- (3-1)


(4) From the assumption \displaystyle g_k=\frac{g}{\sqrt{d}} = \sqrt{\frac{\gamma v}{2d}}, we have:

 \displaystyle\xi(t) = \sqrt{\frac{\gamma v}{2}}\left\{\Psi_+(t,t_0)+\Psi_-(t,t_0)\right\}

So, from (2-2), we have:

 \displaystyle\dot c_i(t) = -\left(i\Delta'_i+\frac{|\beta_i|^2\gamma_i}{2}\right)c_i(t)-i\beta_i\sqrt{\frac{\gamma v}{2}}\left\{\Psi_+(t,t_0)+\Psi_-(t,t_0)\right\} --- (4-1)

Defining f(t) as \displaystyle c_i(t) = e^{-\left(i\Delta'_i+\frac{|\beta_i|^2\gamma}{2}\right)(t-t_0)}f(t) with an initial condition f(t_0)=0, from (4-1), we have a solution:

 \displaystyle c_i(t) = -i\beta_i\sqrt{\frac{\gamma v}{2}}\int_{t_0}^t\left\{\Psi_+(0,\tau)+\Psi_-(0,\tau)\right\}e^{-\left(\Delta'_i+\frac{|\beta_i|^2\gamma}{2}\right)(t-\tau)}\,d\tau

With input photons \displaystyle\Psi_\pm^{\rm in}(0,t) = a_\pm e^{(-i\omega+0^+)t}, by taking t_0\to-\infty, we have:

 \displaystyle c_i(t) = -i\beta_i\sqrt{\frac{\gamma v}{2}}\frac{a_+ + a_-}{i(\Delta'_i-\omega)+\frac{|\beta_i|^2\gamma}{2}}e^{(-i\omega+0^+)t}

Hence, from(3-1), we have:

 \displaystyle \Psi_\pm^{\rm out}(0, t) = b_\pm e^{(-i\omega+0^+)t} = e^{(-i\omega+0^+)t}\left[a_\pm-\frac{\gamma}{2}\sum_i|\beta_i|^2\frac{a_+ + a_-}{i(\Delta'_i-\omega)+\frac{|\beta_i|^2\gamma}{2}}\right]

 \displaystyle \therefore\,T_\omega = 1 + R_\omega,\,R_\omega = -\frac{\gamma}{2}\sum_i\frac{|\beta_i|^2}{i(\Delta'_i-\omega)+\frac{|\beta_i|^2\gamma}{2}}

Hence the spectrum has multiple peaks at each \omega\sim \Delta'_i with height and width \propto |\beta_i|^2.

7.7

 \displaystyle H=\Delta\mid 1\rangle\langle 1\mid + \sum_k\omega_k\hat a_k^\dagger\hat a_k+\sum_k\left(g_{a,k}\mid 1\rangle\langle a\mid \hat a_k + g_{b,k}\mid 1\rangle\langle b\mid \hat a_k +\,{\rm h.c.}\right)

  \displaystyle = \Delta\mid 1\rangle\langle 1\mid + \sum_k\omega_k\hat a_k^\dagger\hat a_k+\sum_k\left(\sqrt{|g_{a,k}|^2+|g_{b,k}|^2}\mid 1\rangle\langle 0_k\mid \hat a_k +\,{\rm h.c.}\right)

where \displaystyle \mid 0_k\rangle := \frac{1}{\sqrt{|g_{a,k}|^2+|g_{b,k}|^2}}\left(g_{a,k}\mid a\rangle + g_{b,k}\mid b\rangle\right)

Around the resonance frequency \omega_k \sim \Delta', suppose that the couplings g_{a,k},\,g_{b,k} are almost constant g_{a,k}=g_a,\, g_{b,K}=g_b, the system is effectively described with:

 \displaystyle H_{\rm eff} = \Delta\mid 1\rangle\langle 1\mid + \sum_k\omega_k\hat a_k^\dagger\hat a_k+\sum_k\left(\sqrt{|g_{a}|^2+|g_{b}|^2}\mid 1\rangle\langle 0\mid \hat a_k +\,{\rm h.c.}\right)

where \displaystyle \mid 0\rangle := \frac{1}{\sqrt{|g_{a}|^2+|g_{b}|^2}}\left(g_{a}\mid a\rangle + g_{b}\mid b\rangle\right)

So the system has effectively a single ground state \mid 0\rangle, and the state orthogonal to \mid 0\rangle becomes a dark state.

7.8

???

7.9

???

7.10

 \displaystyle U \simeq \mid g\rangle\langle g\mid\otimes D(\alpha_-) + \mid e\rangle\langle e\mid \otimes D(\alpha_+)

 \displaystyle U\rho_{\rm qubit}\otimes\mid{\rm vac}\rangle\langle{\rm vac}\mid U^\dagger

  \displaystyle =\, \mid g\rangle\langle g\mid \rho_{\rm qubit}\mid g\rangle\langle g\mid \otimes \mid\alpha_-\rangle\langle \alpha_-\mid + \mid e\rangle\langle e\mid\rho_{\rm qubit}\mid e\rangle\langle e\mid \otimes \mid\alpha_+\rangle\langle \alpha_+\mid

   \displaystyle +\, \mid g\rangle\langle g\mid \rho_{\rm qubit}\mid e\rangle\langle e\mid \otimes \mid\alpha_-\rangle\langle \alpha_+\mid + \mid e\rangle\langle e\mid\rho_{\rm qubit}\mid g\rangle\langle g\mid \otimes \mid\alpha_+\rangle\langle \alpha_-\mid

 \displaystyle \therefore\,\epsilon_{+1}(\rho_{\rm qubit}) = {\rm Tr_{cavity}}\left(\prod_{+1}\mid d\rangle\langle g\otimes D(\alpha_-) + \mid e\rangle\langle e\mid \otimes D(\alpha_+)\right)

   \displaystyle = \,\mid g\rangle\langle g\mid \rho_{\rm qubit}\mid g\rangle\langle g\mid {\rm Tr_{cavity}}\left(\prod_{+1}\mid\alpha_-\rangle\langle \alpha_-\mid\right)

    \displaystyle + \,\mid e\rangle\langle e\mid \rho_{\rm qubit}\mid e\rangle\langle e\mid {\rm Tr_{cavity}}\left(\prod_{+1}\mid\alpha_+\rangle\langle \alpha_+\mid\right)

    \displaystyle + \,\mid g\rangle\langle g\mid \rho_{\rm qubit}\mid e\rangle\langle e\mid {\rm Tr_{cavity}}\left(\prod_{+1}\mid\alpha_-\rangle\langle \alpha_+\mid\right)

    \displaystyle + \,\mid e\rangle\langle e \mid \rho_{\rm qubit}\mid g\rangle\langle g\mid {\rm Tr_{cavity}}\left(\prod_{+1}\mid\alpha_+\rangle\langle \alpha_-\mid\right)

   \displaystyle = \,\mid g\rangle\langle g\mid \rho_{\rm qubit}\mid g\rangle\langle g\mid M_n + \mid e\rangle\langle e\mid \rho_{\rm qubit}\mid e\rangle\langle e\mid (1-M_n)

    \displaystyle + \,\mid g\rangle\langle g\mid \rho_{\rm qubit}\mid e\rangle\langle e\mid {\rm Tr_{cavity}}\left(\prod_{+1}\mid\alpha_-\rangle\langle \alpha_+\mid\right)

    \displaystyle + \,\mid e\rangle\langle e \mid \rho_{\rm qubit}\mid g\rangle\langle g\mid {\rm Tr_{cavity}}\left(\prod_{+1}\mid\alpha_+\rangle\langle \alpha_-\mid\right)

 \displaystyle \therefore\, p_{+1} = {\rm Tr}(\epsilon_{+1}(\rho_{\rm qubit}))

  \displaystyle = M_n \langle g\mid\rho_{\rm qubit}\mid g\rangle + (1-M_n) \langle e\mid\rho_{\rm qubit}\mid e\rangle

  \displaystyle = M_n {\rm Tr}(\rho_{\rm qubit}\mid g\rangle\langle g\mid) + (1-M_n) {\rm Tr}(\rho_{\rm qubit}\mid e\rangle\langle e\mid)

Likewise,

 \displaystyle p_{-1} = {\rm Tr}(\epsilon_{-1}(\rho_{\rm qubit}))

  \displaystyle = (1-M_n) {\rm Tr}(\rho_{\rm qubit}\mid g\rangle\langle g\mid) + M_n {\rm Tr}(\rho_{\rm qubit}\mid e\rangle\langle e\mid)

Quantum Information and Quantum Optics with Superconducting Circuits - Exercise Solutions (Chapter 6) : Part2

6.10

(1) \displaystyle H = (2\Delta + \alpha)\mid 2\rangle\langle 2\mid + \Delta \mid 1 \rangle\langle 1 \mid

  \displaystyle {} + \epsilon_0\cos\omega t\left(\mid 2\rangle\langle 1\mid + \mid 1\rangle\langle 0\mid + \mid 1\rangle\langle 2\mid + \mid 0\rangle\langle 1\mid\right)

Define H_0 as:

  \displaystyle H_0 = 2\omega \mid 2 \rangle\langle 2 \mid + \omega \mid 1 \rangle\langle 1 \mid

Then,

 \displaystyle H = H_0 + V_1 + V_2

 \displaystyle V_1 = (2\delta + \alpha) \mid 2 \rangle\langle 2 \mid+\delta  \mid 1 \rangle\langle 1 \mid

 \displaystyle V_2 = \epsilon_0\cos\omega t\left(\mid 2\rangle\langle 1\mid + \mid 1\rangle\langle 0\mid + \mid 1\rangle\langle 2\mid + \mid 0\rangle\langle 1\mid\right)

So, the interaction Hamiltonian is:

 \displaystyle H_I(t) = e^{iH_0t}(V_1 + V_2)e^{-iH_0t} = V_1 + e^{iH_0t}V_2e^{-iH_0t}

Since:

 \displaystyle [iH_0t, \mid 2\rangle\langle 1\mid ] = i\omega t \mid 2\rangle\langle 1\mid

 \displaystyle [iH_0t, \mid 1\rangle\langle 0\mid ] = i\omega t \mid 1\rangle\langle 0\mid

We have:

 \displaystyle e^{iH_0t}V_2e^{-iH_0t} = \epsilon_0\cos\omega t\left(e^{i\omega t}\mid 2\rangle\langle 1\mid+e^{i\omega t}\mid 1\rangle\langle 0\mid+ {\rm h.c.}\right)

By dropping the non-RWA terms such as \displaystyle e^{\pm 2i\omega t}, we have:

 \displaystyle H_I(t) = (2\delta + \alpha) \mid 2 \rangle\langle 2 \mid+\delta  \mid 1 \rangle\langle 1 \mid+ \frac{\epsilon_0}{2}\left(\mid 2\rangle\langle 1\mid + \mid 1 \rangle\langle 0\mid + {\rm h.c.}\right)


(2) By dropping the third state, we have:

 \displaystyle H_I = \delta\mid 1\rangle\langle 1\mid + \frac{\epsilon_0}{2}\left(\mid 1 \rangle\langle 0\mid + \mid0\rangle\langle 1\mid\right)

For \displaystyle \mid\Psi(t)\rangle = c_0(t)\mid 0\rangle + c_1(t)\mid 1\rangle

 \displaystyle H_I\mid\Psi(t)\rangle = c_0(t)\frac{\epsilon_0}{2} +c_1(t)\delta\mid 1 \rangle + c_1(t)\frac{\epsilon_0}{2}\mid 0\rangle

Hence, from the Schroedinger equation: \displaystyle i\frac{d}{dt}\mid\Psi(t)\rangle = H_I\mid\Psi(t)\rangle, we have:

 \displaystyle i\dot c_0(t) = \frac{\epsilon_0}{2}c_1(t) --- (1)

 \displaystyle i\dot c_1(t) = \frac{\epsilon_0}{2}c_0(t) + \delta c_1(t) --- (2)

By combining them, we have:

 \displaystyle\ddot c_1(t) + i\delta\dot c_1(t) + \left(\frac{\epsilon_0}{2}\right)^2 c_1(t) = 0

 \therefore c_1(t) = e^{-i\frac{\delta}{2}t}\left(A e^{i\frac{D}{2}t} + B e^{-i\frac{D}{2}t}\right) , where \displaystyle D=\sqrt{\delta^2+\epsilon^2}

From the initial condition c_1(0) = 0, A+B=0, so,

 \displaystyle c_1(t) = Ae^{-i\frac{\delta}{2}t}\left(e^{i\frac{D}{2}t} - e^{-i\frac{D}{2}t}\right)= 2Aie^{-i\frac{\delta}{2}t}\sin\frac{D}{2}t

From (2), \displaystyle c_0(t) = \frac{2i}{\epsilon_0}\dot c_1(t) -\frac{2}{\epsilon_0}\delta c_1(t)

The initial condition for c_0(t) is:

 \displaystyle c_0(0) = \frac{2i}{\epsilon_0}2Ai\frac{D}{2} = 1

 \displaystyle \therefore A = -\frac{\epsilon_0}{2D}

 \displaystyle\therefore c_1(t) = -\frac{\epsilon_0i}{\sqrt{\delta^2+\epsilon_0^2}}e^{-\frac{\delta}{2}t}\sin\left(\frac{1}{2}\sqrt{\delta^2 + \epsilon_0^2}t\right)

So, if \delta = 0, |c_1(t)|^2 = 1 at \displaystyle \frac{\epsilon_0}{2}T_{\rm flip} = \frac{\pi}{2}.

 \displaystyle \therefore T_{\rm flip} = \frac{\pi}{\epsilon_0}


(3) The interaction Hamiltonian is:

 \displaystyle H_I = \alpha \mid 2 \rangle\langle 2 \mid + \frac{\epsilon_0}{2}\left(\mid 2\rangle\langle 1\mid + \mid 1 \rangle\langle 0\mid + {\rm h.c.}\right)

In order to diagonalize the qubit space, introduce the states \mid \pm\rangle as:

 \displaystyle \mid 0\rangle = \frac{1}{\sqrt{2}}\left(\mid + \rangle + \mid - \rangle\right)

 \displaystyle \mid 1\rangle = \frac{1}{\sqrt{2}}\left(\mid + \rangle - \mid - \rangle\right)

Since \displaystyle \mid 1\rangle \langle 0\mid +\, {\rm h.c.} = \mid +\rangle\langle +\mid - \mid -\rangle\langle -\mid,

 \displaystyle H_I = \alpha \mid 2 \rangle\langle 2 \mid + \frac{\epsilon_0}{2}\mid +\rangle\langle +\mid - \frac{\epsilon_0}{2}\mid -\rangle\langle -\mid

        \displaystyle {} + \frac{\epsilon_0}{2\sqrt{2}}\left(\mid 2\rangle\langle + \mid - \mid 2\rangle\langle - \mid +\, {\rm h.c.}\right)

  \displaystyle = H_0 + V

where,

 \displaystyle H_0 =  \alpha \mid 2 \rangle\langle 2 \mid + \frac{\epsilon_0}{2}\mid +\rangle\langle +\mid - \frac{\epsilon_0}{2}\mid -\rangle\langle -\mid

 \displaystyle V = \frac{\epsilon_0}{2\sqrt{2}}\left(\mid 2\rangle\langle + \mid - \mid 2\rangle\langle - \mid +\, {\rm h.c.}\right)

We will apply an additional transformation with H_0 to a new interaction picture, then, the new interaction Hamiltonian is:

 \displaystyle V_I(t) = e^{iH_0t}Ve^{-iH_0t}

  \displaystyle = \frac{\epsilon_0}{2\sqrt{2}}\left\{
e^{i\left(\alpha-\frac{\epsilon_0}{2}\right)t}\mid 2\rangle\langle + \mid - e^{i\left(\alpha+\frac{\epsilon_0}{2}t\right)}\mid 2\rangle\langle - \mid +\, {\rm h.c.}\right\}

 \displaystyle\because\, [iH_0t,\mid 2\rangle\langle + \mid] = it\left(\alpha-\frac{\epsilon_0}{2}\right)\mid 2\rangle\langle +\mid

  \displaystyle[iH_0t,\mid 2\rangle\langle - \mid] = it\left(\alpha+\frac{\epsilon_0}{2}\right)\mid 2\rangle\langle -\mid

Since \epsilon_0 << \alpha,

 \displaystyle V_I(t) \simeq \frac{\epsilon_0}{2\sqrt{2}}\left\{e^{i\alpha t}\left(\mid 2\rangle\langle + \mid - \mid 2\rangle\langle - \mid\right) +
e^{-i\alpha t}\left(\mid +\rangle\langle 2 \mid - \mid -\rangle\langle 2 \mid\right) \right\}

For \displaystyle \mid\Psi(t)\rangle = c_2(t)\mid 2\rangle + c_+(t)\mid+\rangle + c_-(t)\mid -\rangle

 \displaystyle V_I(t)\mid\Psi(t)\rangle = \frac{\epsilon_0}{2\sqrt{2}}\left\{
c_2(t)e^{-i\alpha t}\mid +\rangle - c_2(t)e^{-i\alpha t}\mid -\rangle + c_+(t)e^{i\alpha t}\mid 2\rangle -c_-(t)e^{i\alpha t}\mid 2\rangle\right\}

So, from the Schroedinger equation \displaystyle i\frac{d}{dt}\mid\Psi(t)\rangle = V_I(t)\mid\Psi(t)\rangle, we have:

 \displaystyle i\dot c_+(t) = \frac{\epsilon_0}{2\sqrt{2}}e^{-i\alpha t}c_2(t) --- (1)

 \displaystyle i\dot c_-(t) = -\frac{\epsilon_0}{2\sqrt{2}}e^{-i\alpha t}c_2(t) --- (2)

 \displaystyle i\dot c_2(t) =\frac{\epsilon_0}{2\sqrt{2}}e^{i\alpha t}\left\{c_+(t)-c_-(t)\right\} --- (3)

From (3),

 \displaystyle  \frac{\epsilon_0}{2\sqrt{2}}\left\{c_+(t)-c_-(t)\right\} = ie^{-i\alpha t}\dot c_2(t)

 \displaystyle  \therefore\,\frac{\epsilon_0}{2\sqrt{2}}\left\{\dot c_+(t)-\dot c_-(t)\right\} = \alpha e^{-i\alpha t}\dot c_2(t) + i e^{-i\alpha t}\ddot c_2(t)

By substituting (1), (2), we have:

 \displaystyle \ddot c_2(t) -i\alpha \dot c_2(t) + \frac{\epsilon^2_0}{4}c_2(t) = 0

 \displaystyle c_2(t) = e^{i\frac{\alpha}{2}t}\left(Ae^{i\frac{D}{2}t}+B e^{-i\frac{D}{2}t}\right) , where \displaystyle D = \sqrt{\alpha^2+\epsilon^2}\simeq \alpha

From the initial condition c_2(0) = 0, A+B=0, so,

 \displaystyle c_2(t) = 2iAe^{i\frac{\alpha}{2}t}\sin\frac{\alpha}{2}t

Then \displaystyle \dot c_2(0) = iA\alpha

From the initial condition c_+(0) - c_-(0) = \pm 1 (where we suppose that \displaystyle \mid\Psi(0)\rangle =\, \mid \pm \rangle) and (3),

 \displaystyle -A\alpha = \pm \frac{\epsilon_0}{2\sqrt{2}}

 \displaystyle \therefore A = \pm\frac{\epsilon_0}{2\sqrt{2}\alpha}

 \displaystyle \therefore c_2(t) = \pm i \frac{\epsilon_0}{\sqrt{2}\alpha}e^{i\frac{\alpha}{2}t}\sin\frac{\alpha}{2}t

Hence, the excitation probability is:

 \displaystyle \overline{|c_2(t)|^2} = \frac{\epsilon_0^2}{4\alpha^2}

When \alpha = 0.05\Delta, to suppress the leakage below 1%,

 \displaystyle\frac{\epsilon_0^2}{4(0.05\Delta)^2} \le 0.01

 \therefore \epsilon_0 \le 0.01\Delta


(4) \displaystyle\alpha = 2\pi\times 400\times 10^9 = 8\pi\times 10^{11}

Suppose that \displaystyle T_{\rm flip} = \frac{\pi}{\epsilon_0} = 10 \times 10^{-9} = 10^{-8}

The error rate is \displaystyle \frac{\epsilon_0^2}{4\alpha^2} = \frac{\pi^2}{4\alpha^2 T_{\rm flip}^2} \sim 10^{-8}

To suppress the error rate \displaystyle  \frac{\epsilon_0^2}{4\alpha^2} \sim 0.01,

  \displaystyle \epsilon_0 \sim 2\alpha\times 10^{-1} = 16\pi\times 10^{10}

 \displaystyle T_{\rm flip} = \frac{\pi}{\epsilon_0} \sim 10^{-11}

6.11

www.wolframcloud.com

6.13

???

6.14

Since the current rotates in the opposite directions in two loops, the external flux \Phi in the potential is replaced by \Phi_{\rm up}-\Phi_{\rm down}.

6.15

\varphi_{L,R} is (classically) determined by (6.52):

 \displaystyle \frac{L_J}{L}\varphi = \sin(\varphi)

When  L_J \ll L

 \varphi_{R} = \pi - \epsilon, and \sin(\varphi)=\sin(\pi-\epsilon) \simeq \epsilon

 \displaystyle \therefore \frac{L_J}{L}(\pi-\epsilon) = \epsilon

 \displaystyle \therefore \epsilon = \frac{L_J}{L+L_J}\pi \simeq \frac{L_J}{L}\pi

 \displaystyle\therefore \varphi_R = \pi - \frac{L_J}{L}\pi

Likewise,

 \displaystyle\therefore \varphi_L = -\pi + \frac{L_J}{L}\pi

For the inductor L, \displaystyle \hat I = \frac{\hat\phi}{L} = \frac{\varphi_0}{L}\hat\varphi

Suppose that the wavefunction of \mid L\rangle and \mid R\rangle is approximately Gaussian:

 \displaystyle\phi_{L,R}(\varphi) = \frac{1}{\sqrt{Z}}\exp\left\{-\frac{1}{2\sigma^2_\varphi}\left(\varphi - \varphi_{L,R}\right)^2\right\}

 \displaystyle\langle L\mid \hat I\mid R\rangle \simeq \frac{\varphi_0}{Z L} \int_{-\infty}^{\infty} \exp\left\{-\frac{1}{2\sigma^2_\varphi}\left(\varphi - \varphi_{L}\right)^2\right\}\varphi\exp\left\{-\frac{1}{2\sigma^2_\varphi}\left(\varphi - \varphi_{R}\right)^2\right\}\,d\varphi

Since \varphi_{L} = -\varphi_{R}, the integrand is an odd function.

 \displaystyle \therefore\langle L\mid \hat I\mid R\rangle \simeq 0

The diagonal elements are:

 \displaystyle\langle L\mid \hat I\mid L\rangle \simeq  \frac{\varphi_0}{Z L} \int_{-\infty}^{\infty}
 \exp\left\{-\frac{1}{\sigma^2_\varphi}\left(\varphi - \varphi_{L}\right)^2\right\}\varphi\,d\varphi

  \displaystyle =  \frac{\varphi_0\varphi_L}{Z L} \int_{-\infty}^{\infty}
 \exp\left(-\frac{\varphi'^2}{\sigma^2_\varphi}\right)\,d\varphi' = \frac{\varphi_0\varphi_L}{L} = -\frac{\Phi_0}{2L}\left(1-\frac{L_J}{L}\right) = \tilde I_C

Likewise,

 \displaystyle\langle R\mid \hat I\mid R\rangle \simeq \tilde I_C

Note that \displaystyle\langle R\mid \hat I\mid R\rangle = - \langle L\mid \hat I\mid L\rangle

Using the new basis:

 \displaystyle \mid 0\rangle = \frac{1}{\sqrt{2}}\left(\mid L\rangle - \mid R\rangle\right)

 \displaystyle \mid 1\rangle = \frac{1}{\sqrt{2}}\left(\mid L\rangle + \mid R\rangle\right)

we have:

 \displaystyle\langle 0 \mid \hat I \mid 0 \rangle = \langle 1 \mid \hat I \mid 1 \rangle = 0

 \displaystyle\langle 0 \mid \hat I \mid 1 \rangle = \langle L \mid \hat I \mid L \rangle = \tilde I_C

 \displaystyle \therefore \hat I = \tilde I_C\sigma^x

6.16

(1) \displaystyle H = \frac{\Delta}{2}\sigma^z_1 + \frac{\Delta}{2}\sigma^z_2 + J\sigma_1^x\sigma_2^x = H_0 + V

where,

 \displaystyle H_0 =  \frac{\Delta}{2}\sigma^z_1 + \frac{\Delta}{2}\sigma^z_2

 \displaystyle V =   J\sigma_1^x\sigma_2^x = J(\sigma^+_1 + \sigma^-_1)(\sigma^+_2 + \sigma^-_2)
=\sigma_1^+\sigma_2^+ + \sigma_1^-\sigma_2^- + \sigma_1^+\sigma_2^- + \sigma_1^-\sigma_2^+

Since \displaystyle [\sigma_z,\sigma^{\pm}] = \pm 2\sigma^{\pm},

 [H_0, \sigma_1^+\sigma_2^+] = 2\Delta \sigma_1^+\sigma_2^+,\,[H_0, \sigma_1^-\sigma_2^-] = -2\Delta \sigma_1^-\sigma_2^-

 [H_0, \sigma_1^+\sigma_2^-] = 0,\,[H_0, \sigma_1^-\sigma_2^+] = 0

Hence, the interaction Hamiltonian is:

 \displaystyle H_I = e^{iH_0t}Ve^{-iH_0t} = J\left(e^{2i\Delta t}\sigma_1^+\sigma_2^+ + e^{-2i\Delta t}\sigma_1^-\sigma_2^- + \sigma^+_1\sigma^-_2 + \sigma^-_1\sigma^+_2\right)

The first two terms oscillates two times faster than the energy gap \Delta, so as an approximation (of a weak interaction), we can drop these terms. Hence, getting back to the original Schroedinger picture, we have:

 \displaystyle H_{\rm RWA} = \frac{\Delta}{2}\sigma^z_1 + \frac{\Delta}{2}\sigma^z_2 + J( \sigma^+_1\sigma^-_2 + \sigma^-_1\sigma^+_2)

 Using \{\mid 11\rangle, \mid 10\rangle, \mid 01\rangle, \mid 00\rangle\} as basis, the matrix representation becomes:

 \displaystyle H_{\rm RWA} = \frac{\Delta}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1\end{pmatrix}\otimes \begin{pmatrix} 1 & 0 \\ 0 & 1\end{pmatrix} + \frac{\Delta}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1\end{pmatrix}\otimes \begin{pmatrix} 1 & 0 \\ 0 & -1\end{pmatrix}

       \displaystyle {} + J \begin{pmatrix} 0 & 1 \\ 0 & 0\end{pmatrix}\otimes \begin{pmatrix} 0 & 0 \\ 1 & 0\end{pmatrix} + J \begin{pmatrix} 0 & 0 \\ 1 & 0\end{pmatrix}\otimes \begin{pmatrix} 0 & 1 \\ 0 & 0\end{pmatrix}

 \displaystyle = \frac{\Delta}{2}\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1\end{pmatrix} + \frac{\Delta}{2}\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1\end{pmatrix}

    \displaystyle {} + J\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{pmatrix}+J\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0\end{pmatrix}

 \displaystyle =\begin{pmatrix} \Delta & 0 & 0 & 0 \\ 0 & 0 & J & 0 \\ 0 & J & 0 & 0 \\ 0 & 0 & 0 & -\Delta\end{pmatrix}

By rearranging the order of basis as \{\mid 11\rangle, \mid 00\rangle, \mid 10\rangle, \mid 01\rangle\}, we have:

 \displaystyle H_{\rm RWA} = \begin{pmatrix} \Delta & 0 & 0 & 0 \\ 0 & -\Delta & 0 & 0 \\ 0 & 0 & 0 & J \\ 0 & 0 & J & 0\end{pmatrix}

So in the even space \{\mid 11\rangle, \mid 00\rangle\}, \mid 11\rangle and \mid 00\rangle are the eigenvectors with eigenvalues \Delta and -\Delta. In the odd space \{\mid 10\rangle, \mid 01\rangle\}, \displaystyle\frac{1}{\sqrt{2}}\left(\mid 10\rangle \pm \mid 01\rangle\right) are the eigenvectors with eigenvalues \pm J.


(2)(3) By applying the same matrix representation for the full Hamiltonian, we have:

 \displaystyle H = \begin{pmatrix} \Delta & J & 0 & 0 \\ J & -\Delta & 0 & 0 \\ 0 & 0 & 0 & J \\ 0 & 0 & J & 0\end{pmatrix}

In the odd space, we have the same eigenvectors (with the same eigenvalues) as (1). In the even space, the eigenvalues are \displaystyle\pm\sqrt{\Delta^2+J^2}.

The ground state with the eigenvalue \displaystyle - \sqrt{\Delta^2+J^2} is:

 \displaystyle \mid \tilde{00}\rangle \propto \left(\Delta - \sqrt{\Delta^2 + J^2}\right)\mid 11\rangle + J\mid 00\rangle

  \displaystyle \propto \left\{ 1-\sqrt{1-\left(\frac{J}{\Delta}\right)^2}\right\} \mid 11\rangle + \frac{J}{\Delta}\mid 00\rangle

  \displaystyle\simeq \frac{1}{2}\left(\frac{J}{\Delta}\right)^2\mid 11\rangle + \frac{J}{\Delta}\mid 00\rangle \propto \frac{J}{2\Delta}\mid 11\rangle + \mid 00\rangle

 \displaystyle \therefore\,  \mid \tilde{00}\rangle \simeq \sqrt{\frac{1}{1+\frac{J^2}{4\Delta^2}}}\left(\frac{J}{2\Delta} \mid 11\rangle + \mid 00\rangle\right) = \frac{J}{2\Delta} \mid 11\rangle + \mid 00\rangle + O(\left(\frac{J}{\Delta}\right)^2)

Likewise, the eigenstate with the eigenvalue \displaystyle  \sqrt{\Delta^2+J^2} is:

 \displaystyle \mid \tilde{11}\rangle \propto J\mid 11\rangle - \left(\Delta - \sqrt{\Delta^2 + J^2}\right)\mid 00\rangle

 \displaystyle \therefore\,  \mid \tilde{11}\rangle \simeq \mid 11\rangle - \frac{J}{2\Delta}  \mid 00\rangle + O(\left(\frac{J}{\Delta}\right)^2)

Hence, the probability of finding the exited state \displaystyle \mid 11\rangle in \displaystyle \mid \tilde{00}\rangle is:

 \displaystyle P = |\langle 11\mid\tilde{00}\rangle|^2 = \frac{J^2}{4\Delta^2}

6.17

(1) Using \{\mid 11\rangle, \mid 10\rangle, \mid 01\rangle, \mid 00\rangle\} as basis, the matrix representation of non-interactive term is:

 \displaystyle \frac{\Delta_1}{2}\sigma^z_1 + \frac{\Delta_2}{2}\sigma^z_2 = \frac{\Delta_1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1\end{pmatrix}\otimes \begin{pmatrix} 1 & 0 \\ 0 & 1\end{pmatrix} + \frac{\Delta_2}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1\end{pmatrix}\otimes \begin{pmatrix} 1 & 0 \\ 0 & -1\end{pmatrix}

  \displaystyle = \frac{\Delta_1}{2}\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1\end{pmatrix} + \frac{\Delta_2}{2}\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1\end{pmatrix}

  \displaystyle =\begin{pmatrix} \frac{1}{2}(\Delta_1+\Delta_2)& 0 & 0 & 0 \\ 0 & \frac{\delta}{2} & 0 & 0 \\ 0 & 0 & -\frac{\delta}{2} & 0 \\ 0 & 0 & 0 & -\frac{1}{2}(\Delta_1+\Delta_2)\end{pmatrix}

The interaction term is the same as in Problem 6.16. So, by rearranging the order of basis as \{\mid 11\rangle, \mid 00\rangle, \mid 10\rangle, \mid 01\rangle\}, the full Hamiltonian becomes:

  \displaystyle H=\begin{pmatrix} \frac{1}{2}(\Delta_1+\Delta_2)& J & 0 & 0 \\ J & -\frac{1}{2}(\Delta_1+\Delta_2)& 0 & 0 \\ 0 & 0 & \frac{\delta}{2} & J \\ 0 & 0  & J & -\frac{\delta}{2}  \end{pmatrix}


(2) The exact eigenvalues of full Hamiltonian are:

 In the even space: \displaystyle \pm\sqrt{\frac{1}{4}(\Delta_1+\Delta_2)^2+J^2}

 In the odd space: \displaystyle \pm\sqrt{\frac{1}{4}\delta^2+J^2} = \pm\frac{\delta}{2}\left\{1+2\left(\frac{J}{\delta}\right)^2\right\} + O\left(\left(\frac{J}{\delta}\right)^4\right)

On the other hand, if we apply the second-order non-degenerate perturbation in the odd space, the eigenvalues without interaction is \displaystyle E_{\pm} = \pm\frac{\delta}{2}, and the correction to the eigenvalue E_\pm is:

 \displaystyle\frac{J^2}{2}\frac{2}{E_\pm - E_\mp} = \pm\frac{J^2}{\delta}

Hence the approximate eigenvalues are:

 \displaystyle E'_\pm = \pm\frac{\delta}{2} \pm\frac{J^2}{\delta} = \pm\frac{\delta}{2}\left\{1+2\left(\frac{J}{\delta}\right)^2\right\}

This coincides with the exact result except O\left(\left(\frac{J}{\delta}\right)^4\right). This approximation fails when \delta \sim 0 (due to the degeneracy.)


(3) Without interactions, the state \mid 01\rangle stays in the same one:

 \displaystyle \mid\psi^{\rm eff}_{01}(t)\rangle = e^{-i\frac{\Delta_2}{2}t}\mid 01 \rangle

For \displaystyle \mid\psi^{\rm exact}_{01}(t)\rangle = c_{10}(t)\mid 10\rangle + c_{01}(t)\mid 01\rangle,

 \displaystyle H \mid\psi^{\rm exact}_{01}(t)\rangle = \left(\frac{\delta}{2}c_{10}(t)+Jc_{01}(t)\right)\mid 10\rangle + \left(-\frac{\delta}{2}c_{01}(t)+Jc_{10}(t)\right)\mid 01\rangle

Hence, from the Schroedinger equation \displaystyle i\frac{d}{dt}\mid\psi^{\rm exact}_{01}(t)\rangle= H\mid\psi^{\rm exact}_{01}(t)\rangle,

 \displaystyle i \dot c_{10}(t) = \frac{\delta}{2}c_{10}(t) + Jc_{01}(t)

 \displaystyle i \dot c_{01}(t) = -\frac{\delta}{2}c_{01}(t) + Jc_{10}(t)

From the initial conditions  c_{01}(0) = 1,\,c_{10}(0)=0, the solution is:

 \displaystyle c_{01} = \cos\sqrt{\frac{\delta^2}{4}+J^2}t + i\frac{\delta}{2\sqrt{\frac{\delta^2}{4}+J^2}}\sin\sqrt{\frac{\delta^2}{4}+J^2}t


Hence, the fidelity is:

 \displaystyle F=\cos^2\sqrt{\frac{\delta^2}{4}+J^2}t +\frac{\delta^2}{4\left(\frac{\delta^2}{4}+J^2\right)}\sin^2\sqrt{\frac{\delta^2}{4}+J^2}t

  \displaystyle = 1-J^2t^2+O(t^3)

To achieve 99% fidelity, \displaystyle (Jt)^2 \le 10^{-2}, so \displaystyle Jt \le 10^{-1}.

This is achieved by, for example,  J = 10{\rm MHz}, t = 10{\rm nsec}.


(5) In the work by Barends et al. (2014), they used the system with coupling 30MHz and interaction time 43nsec to achieve around 99% fidelity.